Смекни!
smekni.com

Корпускулярно-волновой дуализм материи и принципы суперпозиции, неопределенности, дополнительнос (стр. 1 из 2)

Содержание

Введение

1. Корпускулярно-волновой дуализм

2. Принцип дополнительности

3. Принцип неопределенности

4. Принцип суперпозиции

Заключение

Список использованной литературы

Введение

Квантовая механика – это физическая теория, устанавливающая способ описания и законы движения на микроуровне. Ее начало совпало с началом века. М. Планк в 1900 году предположил, что свет испускается неделимыми порциями энергии – квантами, и математически представил это в виде формулы E=hv, где v – частота света, а h – универсальная постоянная, характеризующая меру дискретной порции энергии, которой обмениваются вещество и излучение. В атомную теорию вошли таким образом прерывистые физические величины, которые могут изменяться только скачками.

Последующее изучение явлений микромира привело к результатам, которые резко расходились с общепринятыми в классической физике и даже теории относительности представлениями. Классическая физика видела свою цель в описании объектов, существующих в пространстве и в формулировке законов, управляющих их изменениями во времени. Но для таких явлений как радиоактивный распад, дифракция, испускание спектральных линий можно утверждать лишь, что имеется некоторая вероятность того, что индивидуальный объект таков и что он имеет такое-то свойство. В квантовой механике нет места для законов, управляющих изменениями индивидуального объекта во времени.

Для классической механики характерно описание частиц путем задания их положения и скоростей и зависимости этих величин от времени. В квантовой механике одинаковые частицы в одинаковых условиях могут вести себя по-разному.

Законы квантовой механики – законы статистического характера. «Мы можем предсказать, сколько приблизительно атомов (радиоактивного вещества – А.Г.) распадутся в следующие полчаса, но мы не можем сказать…почему именно эти отдельные атомы обречены на гибель»(Энштейн А., Инфельд Л. Цит.соч.-С.232).

В микромире господствует статистика, а не уравнения Максвелла или законы Ньютона. «Вместо этого мы имеем законы, управляющие изменениями во времени» (Там же.-С.237). Статистические законы можно применить только к большим совокупностям, но не к отдельным индивидуумам. Квантовая механика отказывается от поиска индивидуальных законов элементарных частиц и устанавливает статистические законы. На базе квантовой механики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь. Волны вероятности говорят нам о вероятности встретить электрон в том или ином месте.

В. Гейзенберг делает такой вывод: «В экспериментах с атомными процессами мы имеем дело с вещами и фактами, которые столь не реальны, сколь реальны любые явления в повседневной жизни. Но атомы или элементарные частицы реальны не в такой степени. Они образуют скорее мир тенденций или возможностей, чем мир вещей и фактов» (Гейзенберг. Цит.соч.-С. 117)[1]

1. Корпускулярно-волновой дуализм

В 1900 г. М. Планк показал, что энергия излучения или поглощения электромагнитных волн не может иметь произвольные значения, а кратна энергии кванта, т.е. волновой процесс приобретает окраску дискретности. Идея Планка о дискретной природе света получили свое подтверждение в области фотоэффекта. Де Бройль открыл примерно в это же время у частиц волновые свойства (дифракция электрона).

Таким образом, частицы неотделимы от создаваемых ими полей и каждое поле вносит свой вклад в структуру частиц, обуславливая их свойства. В этой неразрывной связи частиц и полей можно видеть одно из наиболееважных проявлений единства прерывности и непрерывности в структуре материи.

Для характеристики прерывного и непрерывного в структуре материи следует также упомянуть единство корпускулярных и волновых свойств всех частиц и фотонов. Единство корпускулярных и волновых свойств материальных объектов представляет собой одно из фундаментальных противоречий современной физики и конкретизируется в процессе дальнейшего познания микроявлений. Изучение процессов макромира показали, что прерывность и непрерывность существуют в виде единого взаимосвязанного процесса. При определенных условиях макромира микрообъект может трансформироваться в частицу или поле и проявлять соответствующие им свойства.[4]

Поведение потока частиц – электронов, атомов, молекул – при встрече с препятствиями или отверстиями атомных размеров подчиняется волновым законам: наблюдаются явления дифракции, интерференции, отражения, преломления и т.п. Луи де Бройль предположил, что электрон – это волна определенной длинны.

Дифракция подтверждает волновую гипотезу, отсутствие увеличения энергии вырабатываемых светом частиц – квантовую. Это и получило название корпускулярно – волнового дуализма. Как же описывать процессы в микромире, если «нет никаких шансов последовательно описать световые явления, выбрав только какую-либо одну из двух возможных теорий – волновую или квантовую» (Эйнштейн А., Инфельд Л. Цит.соч.-С. 215.)[1]

2. Принцип дополнительности

Некоторые эффекты объясняются волновой теорией, некоторые другие – квантовой. Поэтому следует использовать разные формулы и из волновой и из квантовой теории для более полного описания процессов.[1]

Анализируя соотношения неопределенностей, Бор вы­двигает принцип дополнительности, согласно которому точ­ная локализация микрообъекта в пространстве и времени и точное применение к нему динамических законов сохра­нения исключают друг друга. Бор показал, что из-за соот­ношения неопределенностей корпускулярная и волновая модели описания поведения квантовых объектов не входят в противоречие друг с другом, потому что никогда не пред­стают одновременно.[2]

«Усилия Бора были направлены на то, чтобы сохранить за обоими наглядными представлениями, корпускулярными и волновыми, одинаковое право на существование, причем он пытался показать, что хотя эти представления возможно исключают друг друга, однако лишь вместе делают возможным полное описание процессов в атоме» (Гейзенберг В. Цит. соч.-С.203)[1]

В одном и том же эксперименте не представляется возможным одновременно проводить изме­рения координат и параметров, определяющих динамичес­кое состояние системы, например, импульса. Если в одной экспериментальной ситуации проявляются корпускулярные свойства микрообъекта, то волновые свойства оказывают­ся незаметными. В другой экспериментальной ситуации, наоборот, проявляются волновые свойства и не проявляют­ся корпускулярные. То есть в зависимости от постановки эксперимента микрообъект показывает либо свою корпус­кулярную природу, либо волновую, но не обе сразу. Эти две природы микрообъекта взаимно исключают друг друга, и в то же время должны быть рассмотрены как дополняющие друг друга. Если вернуться к рассмотренному нами опыту с двумя отверстиями, то, согласно Бору, мы имеем две раз­личные экспериментальные ситуации: одну — с одним открытым отверстием, когда точно известна координата электрона, и поведение электрона соответствует поведению частицы; и вторую — с двумя открытыми отверстиями, в которой появляется интерференционная картина на экране, по которой мы определяем импульс, и поведение электро­на сопоставляем с волной. То есть говорить об электроне как об индивидуальной «себетождественной» частице вне зависимости от конкретной экспериментальной ситуации, в которой он проявляет свои свойства, не имеет физиче­ского смысла. Это составляет сформулированный Бором принцип физической целостности при описании объектов микромира. Выделим суть принципа дополнительности Бора.

Вся информация о микрообъектах может быть получена с помощью только макроприборов, работающих в опреде­ленных диапазонах, позволяющих довести эту информацию, в конечном итоге, до органов чувств познающих субъектов. Макроприборы подчиняются законам классической физики и должны переводить информацию о явлениях в микроми­ре на язык понятий классической физики. Следовательно, любое явление в микромире не может быть проанализиро­вано как само по себе отдельно взятое, а обязательно долж­но включать в себя взаимодействие с классическим мик­роскопическим прибором. С помощью конкретного макро­скопического прибора мы можем исследовать либо кор­пускулярные свойства микрообъектов, либо волновые, но не и те, и другие одновременно. Обе стороны предмета долж­ны рассматриваться как дополнительные по отношению друг к другу.[2]

3. Принцип неопределенности

С принципом дополнительности связано и так называемое «соотношение неопределенностей», сформулированное в 1927 году Вернером Гейзенбергом, в соответствии с которым в квантовой механике не существует состояний, в которых и местоположение, и количество движения (произведение массы на скорость) имели бы вполне определенное значение. Частица со строго определенным импульсом совершенно не локализована.[1]

Можно говорить лишь о вероятности того, где в данный момент времени находится частица, и это является неиз­бежным следствием введения в физическую теорию посто­янной Планка, представлений о квантовых скачках.

Фи­зическая интерпретация «неклассического» поведения мик­рообъектов была впервые дана Гейзенбергом, указавшим на необходимость отказа от представлений об объектах микромира как об объектах, движущихся по стро­го определенным траекториям, для которых однозначно с полной определенностью могут быть одновременно указа­ны и координата и импульс частицы в любой заданный момент времени. Надо принять в качестве закона, описы­вающего движение микрообъектов, тот факт, что знание точной координаты частицы приводит к полной неопреде­ленности ее импульса, и наоборот, точное знание импуль­са частицы — к полной неопределенности ее координаты. Исходя из созданного им математического аппарата кван­товой механики, Гейзенберг установил предельную точность, с которой можно одновременно определить координату и импульс микрочастицы, и получил следующее соотношение неопределенностей этих значений: