Смекни!
smekni.com

Концепции современного естествознания 2 3 (стр. 36 из 111)

Рождение звезд в галактиках происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Поэтому галактики состоят из старых и молодых звезд. Самые старые звезды сосредоточены в шаровых скоплениях, их возраст сравним с возрастом галактики. Эти звезды формировались, когда про-тогалактическое облако распадалось на все более мелкие сгустки. Молодые звезды (возраст около 100 тыс. лет) существуют за счет энергии гравитационного сжатия, которая разогревает центральную область звезды до температуры 10—15 млн. К и «запускает» термоядерную реакцию преобразования водорода в гелий. Именно термоядерная реакция является источником собственного свечения звезд.

141

С момента начала термоядерной реакции, превращающей водород в гелий, звезда типа нашего Солнца переходит на так называемую главную последовательность, в соответствии с которой будут изменяться с течением времени характеристики звезды: ее светимость, температура, радиус, химический состав и масса. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка — расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента звезда выходит на завершающий этап своей жизни. Наше Солнце это ждет примерно через 8 млрд. лет. При этом его размеры увеличатся до орбиты Меркурия, а может быть, и до орбиты Земли, так что от планет земной группы ничего не останется (или останутся оплавленные камни).

Для красного гиганта характерна низкая внешняя, но очень высокая внутренняя температура. При этом в термоядерные процессы включаются все более тяжелые ядра, что приводит к синтезу химических элементов и непрерывной потере красным гигантом вещества, которое выбрасывается в межзвездное пространство. Так, только за один год Солнце, находясь в стадии красного гиганта, может потерять одну миллионную часть своего веса. Всего за десять — сто тысяч лет от красного гиганта остается лишь центральное гелиевое ядро, и звезда становится белым карликом. Таким образом, белый карлик как бы вызревает внутри красного гиганта, а затем сбрасывает остатки оболочки, поверхностных слоев, которые образуют планетарную туманность, окружающую звезду.

Белые карлики невелики по своим размерам — их диаметр даже меньше диаметра Земли, хотя их масса сравнима с солнечной. Плотность такой звезды в миллиарды раз больше плотности воды. Кубический сантиметр его вещества весит больше тонны. Тем не менее, это вещество является газом, хотя и чудовищной плотности. Вещество, из которого состоит белый карлик, — очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов.

В белых карликах термоядерные реакции практически не идут, они возможны лишь в атмосфере этих звезд, куда попадает водород из межзвездной среды. В основном эти звезды светят за счет огромных запасов тепловой энергии. Время их охлаждения — сотни миллионов лет. Постепенно белый карлик остывает, цвет его меняется от белого к желтому, а затем — к красному. Наконец, он превращается в черный карлик — мертвую холодную маленькую звезду

142

размером с земной шар, который невозможно увидеть из другой планетной системы.

Несколько иначе развиваются более массивные звезды. Они живут всего несколько десятков миллионов лет. В них очень быстро выгорает водород, и они превращаются в красные гиганты всего за 2,5 млн. лет. При этом в их гелиевом ядре температура повышается до нескольких сотен миллионов градусов. Такая температура дает возможность для протекания реакций углеродного цикла (слияние ядер гелия, приводящее к образованию углерода). Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3—10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа — самого устойчивого во всей последовательности химического элемента. Более тяжелые химические элементы — от железа до висмута также образуются в недрах красных гигантов, в процессе медленного захвата нейтронов. При этом энергия не выделяется, как при термоядерных реакциях, а, наоборот, поглощается. В результате сжатие звезды все убыстряется.

Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходит в оболочках взрывающихся звезд, при их превращении в новые или сверхновые звезды, которыми становятся некоторые красные гиганты. В зашлакованной звезде нарушается равновесие, электронный газ более не способен противостоять давлению ядерного газа. Наступает коллапс — катастрофическое сжатие звезды, она «взрывается внутрь». Но если отталкивание частиц или какие-либо другие причины все же останавливают этот коллапс, происходит мощный взрыв — вспышка сверхновой звезды. Одновременно при этом в окружающее пространство сбрасывается не только оболочка звезды, но и до 90% ее массы, что приводит к образованию газовых туманностей. При этом светимость звезды увеличивается в миллиарды раз. Так, был зафиксирован взрыв сверхновой звезды в 1054 г. В китайских летописях было записано, что она видна днем, как Венера, в течение 23 дней. В наше время астрономы выяснили, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения.

Взрыв сверхновой звезды сопровождается выделением чудовищного количества энергии. При этом рождаются космические лучи, намного повышающие естественный радиационный фон и нормальные дозы космического излучения. Так, астрофизики подсчитали, что примерно раз в 10 млн. лет сверхновые звезды вспыхивают в непосредственной близости от Солнца, повышая естественный фон в 7 тысяч раз. Это чревато серьезнейшими мутациями

143

живых организмов на Земле. Кроме того, при взрыве сверхновых идет сброс всей внешней оболочки звезды вместе с накопившимися в ней «шлаками» — химическими элементами, результатами деятельности нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.

6.5. Дальнейшее усложнение вещества во Вселенной

Хотя появление крупномасштабных структур во Вселенной привело к образованию множества разновидностей галактик и звезд, среди которых есть совершенно уникальные объекты, все же с точки зрения дальнейшей эволюции Вселенной особое значение имело появление звезд — красных гигантов. Именно в этих звездах в ходе процессов звездного нуклеосинтеза появилось большинство элементов таблицы Менделеева. Это открыло возможность для новых усложнений вещества. В первую очередь, появилась возможность образования планет и появления на некоторых из них жизни и, возможно, разума. Поэтому образование планет стало следующим этапом в эволюции Вселенной.

Состав Солнечной системы

Солнце наша звезда. Солнечная система включает Солнце, девять планет со спутниками, а также пояс астероидов, кометы и метеориты.

Солнце — звезда среднего размера, его радиус составляет около 700 тыс. км, температура на поверхности — около 6000°С. Солнце относится к числу рядовых звезд нашей Галактики (желтый карлик) и расположено ближе к ее краю в одном из спиралевидных рукавов. Солнечная система обращается вокруг Галактики со скоростью около 220 км/с. При этом одновременно оно совершает один оборот вокруг центра Галактики за 250 млн. лет. Данный период называют галактическим годом.

Солнце представляет собой плазменный шар со средней плотностью 1,4 г/см3, окруженный так называемой короной, которую можно наблюдать. Активность Солнца циклична, периодичность циклов составляет 11 лет. Источником солнечной энергии являются термоядерные реакции превращения водорода в гелий, которые происходят в его недрах. Солнце состоит из водорода, гелия и

144

других элементов, соотношение которых изменяется от поверхности к ядру. В верхних слоях содержится около 90% водорода и около 10% гелия. Ядро состоит из водорода лишь на 37%. Соотношение между водородом и гелием с течением времени изменяется в пользу гелия, поскольку уже в течение 4,5 млрд. лет на Солнце протекают термоядерные реакции, превращающие ядра водорода в ядра гелия. Ежесекундно при температуре около 15 млн. градусов 600 млн. т ядер водорода, сливаясь, образуют ядра гелия, при этом 4,3 млн. т трансформируются в лучистую энергию, освещающую всю Солнечную систему. При сохранении таких темпов выгорания водорода Солнце будет светить с той же интенсивностью еще 5—6 млрд. лет, после чего оно превратится в красный гигант, а затем в белого карлика. После этого вновь возможна вспышка термоядерного синтеза, после которого звезда превратится в холодное темное тело — черный карлик.

Планеты Солнечной системы. Крупнейшими после Солнца объектами Солнечной системы являются планеты и их спутники. Считается, что все планеты Солнечной системы возникли одновременно примерно 4,6 млрд. лет назад. В современной космогонии доминирует концепция холодного начального состояния планет, которые под влиянием электромагнитных и гравитационных сил образовались в результате объединения твердых частиц газопылевого облака, окружавшего Солнце.

Все планеты Солнечной системы можно разделить на две группы: 1) планеты-гиганты (Юпитер, Сатурн, Уран, Нептун) и 2) планеты земного типа (Меркурий, Венера, Земля, Марс, Плутон). Оба типа планет отличаются друг от друга по химическому составу. Так, в составе твердых оболочек Юпитера и Сатурна преобладают водород и гелий, эти планеты по химическому составу близки к Солнцу. Планеты земной группы в этом смысле резко отличаются от Солнца, поскольку наиболее распространенными элементами в их составе являются железо, кислород, кремний и магний.