Смекни!
smekni.com

Концепции современного естествознания 2 3 (стр. 55 из 111)

Поскольку современная химия основывается на физике, ученые стремятся объяснить биологические явления и процессы на основе

216

физических закономерностей. В результате в 1950 г. на стыке биохимии, биологии и физики родилась новая наука — биофизика. Биофизики, рассматривая какое-либо биологическое явление, расчленяют его на несколько более элементарных, доступных для понимания актов и исследуют их физические свойства. Таким образом были объяснены механизмы мышечного сокращения, проведения нервного импульса, тайны фотосинтеза и ферментативного катализа.

С помощью биохимии и биофизики ученые смогли объединить знания о структуре и функциях организма. Но ни этим наукам, ни физико-химической биологии в целом не удается дать ответ на основной вопрос биологии — вопрос о происхождении и сущности жизни.

Эволюционный период. Эволюционная биология

Идея развития живой природы проникла в биологию лишь в XIX в., хотя предпосылки эволюционной биологии сформировались еще в античности. Так, в основе систематики живого у Аристотеля лежит идея лестницы существ: он расположил организмы от простого к сложному, человека при этом он поместил на вершине пирамиды животного мира. От этой идеи нужно было сделать лишь шаг к идее эволюции как развитию животного мира путем постоянного усложнения.

Начало эволюционному периоду развития биологии было положено в трудах французского биолога Ж. Б. Ламарка, предложившего первую эволюционную теорию. Она была изложена в его книге «Философия зоологии», вышедшей в 1809 г. Ламарк первым заговорил об изменении организмов под влиянием окружающей среды и передаче приобретенных признаков потомкам. Однако Ламарк в своей теории опирался на ряд неверных исходных положений, из-за которых ему не удалось решить вопрос о соотношении внутренних и внешних факторов эволюции.

Значительный вклад в развитие биологии на данном этапе внесла теория катастроф, автором которой стал французский ученый Ж. Кювье. Он исходил из представлений о том, что природные силы, действующие сейчас и господствовавшие в прошлом, качественно отличаются друг от друга. Поэтому в прошлом периодически могли происходить глобальные природные катаклизмы, прерывающие спокойное течение геологических и биологических процессов на Земле. В результате этих глобальных катастроф почти полностью изменялся не только облик Земли, но и ее органический мир. Причины этих катастроф наука установить не в состоянии, но можно сделать вывод, что именно катастрофы привели к появлению все более сложных органических форм.

Подлинная революция в биологии связана с появлением в 1859 г. теории эволюции Ч. Дарвина, изложенной им в книге «Происхождение видов путем естественного отбора». Эволюционная теория Дар-

217

вина построена на трех постулатах: изменчивости, наследственности и естественном отборе. Изменчивость, по Дарвину, — это способность организмов приобретать новые свойства и признаки и изменять их по разным причинам. Именно изменчивость является первым и главным звеном эволюции. Наследственность — это способность живых организмов передавать свои свойства и признаки последующим поколениям. Естественный отбор является результатом борьбы за существование и означает выживание и успешное размножение наиболее приспособленных организмов. Под действием естественного отбора группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки и в результате приобретают настолько существенные отличия, что превращаются в новые виды. К сожалению, положения о наследственности и изменчивости, также входившие в эту теорию, были разработаны намного хуже. Это дало основания для серьезной критики дарвиновской теории эволюции, которая развернулась в конце XIX - начале XX в.

Современная (синтетическая) теория эволюции появилась лишь к концу 20-х гг. XX в. Она представляла собой синтез генетики и дарвинизма. С этого времени стало возможным говорить об эволюционной биологии как о платформе, на которой происходит синтез разнородного биологического знания. Сегодняшняя эволюционная биология — это результат объединения двух потоков знания: самого эволюционного учения и знаний, полученных другими биологическими науками о процессах и механизмах эволюции. На протяжении XX в. содержание эволюционной биологии постоянно расширялось. Оно дополнено данными генетики, молекулярной биологии, цитологии, палеонтологии. Многие ученые считают, что именно эволюционная биология сможет стать фундаментом теоретической биологии, являющейся основной целью биологов XXI в.

9.2. Структурные уровни организации жизни

Жизнь характеризуется диалектическим единством противоположностей: она одновременно целостна и дискретна. Органический мир представляет собой единое целое, так как составляет систему взаимосвязанных частей (существование одних организмов зависит от других), и в то же время дискретен, поскольку состоит из отдельных единиц — организмов, или особей. Каждый живой организм, в свою очередь, также дискретен, так как состоит из отдельных органов, тканей, клеток, но вместе с тем каждый из органов, обладая определенной автономностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое целое. Наследственная информация осуществляется генами, но

218

ни один из генов вне всей совокупности не определяет развитие признака и т.д.

С дискретностью жизни связаны различные уровни организации органического мира, которые можно определить как дискретные состояния биологических систем, характеризуемых соподчи-ненностью, взаимосвязанностью и специфическими закономерностями. При этом каждый новый уровень обладает особыми свойствами и закономерностями прежнего, низшего уровня, поскольку любой организм, с одной стороны, состоит из подчиненных ему элементов, а с другой — сам является элементом, входящим в состав какой-то макробиологической системы.

На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организация, обмен веществом, энергией и информацией. Существование жизни на более высоких уровнях организации подготавливается и определяется структурой низшего уровня; в частности, характер клеточного уровня определяется молекулярным и субклеточным, организменный — клеточным, тканевым уровнями и т.д.

Структурные уровни организации жизни чрезвычайно многообразны, но при этом основными являются молекулярный, клеточный, онтогенетический, популяционно-видовой, биоценотический, биогеоценотический и биосферный.

Молекулярно-генетический уровень

Молекулярно-генетический уровень жизни — это уровень функционирования биополимеров (белков, нуклеиновых кислот, полисахаридов) и других важных органических соединений, лежащих в основе процессов жизнедеятельности организмов. На этом уровне элементарной структурной единицей является ген, а носителем наследственной информации у всех живых организмов — молекула ДНК. Реализация наследственной информации осуществляется при участии молекул РНК. В связи с тем, что с молекулярными структурами связаны процессы хранения, изменения и реализации наследственной информации, данный уровень называют молекуляр-но-генетическим.

Важнейшими задачами биологии на этом уровне являются изучение механизмов передачи генной информации, наследственности и изменчивости, исследование эволюционных процессов, происхождения и сущности жизни.

Все живые организмы имеют в своем составе простые неорганические молекулы: азот, воду, двуокись углерода. Из них в ходе химической эволюции появились простые органические соединения, ставшие, в свою очередь, строительным материалом для более крупных молекул. Так появились макромолекулы — гигантские мо-

219

лекулы-полимеры, построенные из множества мономеров. Существуют три типа полимеров: полисахариды, белки и нуклеиновые кислоты. Мономерами для них соответственно служат моносахариды, аминокислоты и нуклеотиды.

Белки и нуклеиновые кислоты являются «информационными» молекулами, так как в их строении важную роль играет последовательность мономеров, которая может быть весьма разнообразной. Полисахариды (крахмал, гликоген, целлюлоза) играют роль источника энергии и строительного материала для синтеза более крупных молекул.

Белки — это макромолекулы, представляющие собой очень длинные цепи из аминокислот — органических (карбоновых) кислот, содержащих, как правило, одну или две аминогруппы (— NH2).

В растворах аминокислоты способны проявлять свойства как кислот, так и оснований. Это делает их своеобразным буфером на пути опасных физико-химических изменений. В живых клетках и тканях встречается свыше 170 аминокислот, однако в состав белков их входит только 20. Именно последовательность аминокислот, соединенных друг с другом пептидными связями[2], образует первичную структуру белков. На долю белков приходится свыше 50% общей сухой массы клеток.

Большинство белков выполняет функцию катализаторов (ферментов). В их пространственной структуре есть активные центры в виде углублений определенной формы. В такие центры попадают молекулы, превращение которых катализируется данным белком. Кроме того, белки играют роль переносчиков; например, гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения — результат взаимодействия молекул белков, функция которых заключается в координации движения. Функцией белков-антител является защита организма от вирусов, бактерий и т.д. Активность нервной системы зависит от белков, с помощью которых собирается и хранится информация из окружающей среды. Белки, называемые гормонами, управляют ростом клеток и их активностью.