Untitled Essay Research Paper INTRODUCTIONWhat is BioluminescenceThe

Untitled Essay, Research Paper INTRODUCTION What is Bioluminescence? The current paper main focus is on bioluminescent Fungi but the basic features of

Untitled Essay, Research Paper


What is Bioluminescence?

The current paper main focus is on bioluminescent Fungi but the basic features of

bioluminescence discussed are common to all bioluminescent organisms. Bioluminescence is

simply light created by living organisms. Probably the most commonly known example of

bioluminescence by North Americans is the firefly, which lights its abdomen during its

mating season to communicate with potential mates. This bioluminescent ability occurs in

25 different phyla many of which are totally unrelated and diverse with the phylum Fungi

included in this list (an illustration of a bioluminescent fungi is displayed in figure

1). One of the features of biological light that distinguishes it from other forms of

light is that it is cold light. Unlike the light of a candle, a lightbulb, bioluminescent

light is produced with very little heat radiation. This aspect of bioluminescence

especially interested early scientists who explored it. The light is the result of a

biochemical reaction in which the oxidation of a compound called "Luci

ferin" and the reaction was catalyzed by an enzyme called "Luciferase". The

light generated by this biochemical reaction has been utilized by scientists as a

bioindicator for Tuberculosis as well as heavy metals. On going research involving

bioluminescence is currently underway in the areas of evolution, ecology, histology,

physiology, biochemistry, and biomedical applications.History of Bioluminescent Fungi

The light of luminous wood was first noted in the early writings of

Aristotle which occurred in 382 B.C.(Johnson and Yata 1966 and Newton 1952) The next

mention of luminous wood in the literature occurred in 1667 by Robert Boyle who noticed

glowing earth and noted that heat was absent from the light. Many early scientists such as

Conrad Gesner, Francis Bacon, and Thomas Bartolin all observed and made notation of

luminous earth(Johnson and Yata 1966 and Newton 1952 ). These early observers thought that

the light was due to small insects or animal interactions. The first mention that the

light of luminous wood was due to fungi occurred from a study of luminous timbers used as

supports in mines by Bishoff in 1823. This opened the way for further study by many other

scientists and by 1855 modern experimental work began by Fabre ( Newton 1952). Fabre

established the basic parameters of bioluminescent fungi, those being:

? The light without heat

? The light ceased in a vacuum, in hydrogen, and carbon dioxide

? The light was independent of humidity, temperature, light, and did not burn any

brighter in pure oxygenThe work by Herring (1978) found that the luminescent parts of the included pileus(cap),

hymenium(gills) and the mycelial threads in combination or separately(figure 2) also the

individual spores were also seen to be luminescent. Herring also stated that if the

fruiting body (mushroom) was bioluminescent then the mycelial threads were always

luminescent as well but not vice versa.

From the 1850’s to the early part of the 20th century the identification of the

majority of fungal species exhibiting bioluminescent traits was completed. The research of

bioluminescent fungi stagnated from the 1920’s till 1950’s (Newton 1952 and

Herring 1978 ). After which extensive research began involving the mechanisms of

bioluminescence and is still carried out to the present.The Process of BioluminescenceBioluminescence results because of a certain Biochemical reaction. This can be described

as a chemiluminescent reaction which involves a direct conversion of chemical energy

transformed to light energy( Burr 1985, Patel 1997 and Herring1978). The reaction involves

the following elements:? Enzymes (Luciferase) – biological catalysts that accelerate and control the rate of

chemical reactions in cells.

? Photons – packs of light energy.

? ATP – adenosine triphosphate, the energy storing molecule of all living organisms.

? Substrate (Luciferin) – a specific molecule that undergoes a chemical charge when

affixed by an enzyme.

? Oxygen – as a catalystA simplified formula of the bioluminescent reaction:ATP(energy) + Luciferin (substrate)+ Luciferase(enzyme) + O2(oxidizer) ==

== light (protons)

The bioluminescent reaction occurs in two basic stages:

1) The reaction involves a substrate (D-Luciferin), combining with ATP, and oxygen which

is controlled by the enzyme(Luciferase). Luciferins and Luciferase differ chemically in

different organisms but they all require molecular energy (ATP) for the reaction.

2) The chemical energy in stage one excites a specific molecule (The Luminescent Molecule:

the combining of Luciferase and Luciferin). The excitement is caused by the increased

energy level of the luminescent molecule. The result of this excitement is decay which is

manifested in the form of photon emissions, which produces the light. The light given off

does not depend on light or other energy taken in by the organism and is just the

byproduct of the chemical reaction and is therefore cold light.

The bioluminescence in fungi occurs intracellulary and has been noted at the spore

level(Burr 1985, Newton 1952 and Herring 1978). This may at times be mistaken for a

extracellular source of light but this is due to the diffusion of the light through the

cells of the fungus. In examining the photograph in figure 1, it appear that the cap of

the fungus is glowing but after study, it was observed that just the gill structures that

emits the light and the cap (which is thin) emits the light of the gills by

diffusion(Herring 1978).

The energy in photons can vary with the frequency (color) of the light. Different types of

substrates(Luciferins) in organisms produce different colors. Marine organisms emit blue

light, jellyfish emit green, fireflies emit greenish yellow, railroad worms emit red and

fungi emit greeny bluish light (Patel 1997).

Fungal Families Exhibiting Bioluminescence

The phylum Fungi is composed of the following 5 divisions (Newton


? Myxomycetes (slime molds)

? Schizomycestes (bacteria)

? Phycomycetes (moulds)

? Ascomycetes ( yeasts, sac fungi and some molds)

? Basidiomycetes (smuts, rusts, and mushrooms)Of the above divisions the majority of bioluminescence occurs in the Basidiomycetes and

only one observation has been made involving the Ascomycetes; specifically in the

Ascomycete genus Xylaria (Harvey 1952). At present there are 42 confirmed bioluminescent

Basidiomycetes that occur world wide and share no resemblance to each other visually,

other than the ability to be bioluminescent. Of these 42 species that have been confirmed

24 of these have been identified just in the past 20 years and as such many more species

may exhibit this trait but are yet to be found.

The two main genus that display bioluminescence are the genus Pleurotus which have at

present 12 species which occur in continental Europe and Asia. The genus Mycena have 19

species identified to date with a world wide distribution range. In North America only 5

species of bioluminescent basiodiomycetes have been reported. These include the Honey

mushroom -Armillaria mellea (illustrated in figure 3), the common Mycena -Mycena

galericulata (illustrated in figure 1), the Jack O’Latern – Ophalalotus olearius

(pictured in figure 4), Panus styticus and Clitocybe illudens.

The question of whether bioluminescent mushrooms were all poisonous was raised in the

discussions between my laboratory partner and myself. After examining the literature and a

mushroom field guide book it was evident that there was no correlation between the

edibility of the mushroom and its bioluminescence. Some mushrooms such as Armillaria

mellea the Honey mushroom was listed as being excellent to eat. While the Jack

O’Latern – Omphalalotus olearius was listed as poisonous and caused sever

gastrointestinal cramps. The edible merits of the common Mycea were unknown and while

Panus stypticus was listed as poisonous it was found to contain a clotting agent and

useful in stopping bleeding (Lincoff 1981, Newton 1952 and Herring 1978). As it only a

field guide to North American mushrooms was available, only the North American varieties

were examined. If all 42 species of bioluminescent basidiomycetes were included in the

search, a possible correlation may have been found.Bioluminescence Research ApplicationsLuminescence has a unique advantages for scientific studies as it is the only biochemical

process that has a visible indicator than can be measured. The light given off in the

bioluminescent reaction is now able to be accurately measured with the use of a

luminometer. This ability to easily and accurately detect small amounts of light has led

to the use of the bioluminescent reaction in scientific research involving biological

process applications. The following are just a few applications, some of which have been

developed in only the last few years (Johnson and Yata 1966, and Patel 1997). The

following are two examples of which have been recently developed.

The Tuberculosis Test

Testing for tuberculosis has long been a problem because of the long time it takes for the

species to grow to a size that is detectable by modern medicine. Typically growing a

culture of Mycobacterium tuberculosis large enough to determine the strain that a

particular patient has can take up to three months. Of course, this poses a problem

because the patient often can not wait for the diagnosis and must be given drugs that his

strain may be resistant to. This is further complicated because there are 11 drugs used to

combat TB, picking the right one before determining the strain has a 1/11 chance of

success. Recently a way of incorporating bioluminescence into the TB tests has been found

and can sharply reduce the diagnosis time to as little as 2 days. The technique involves

inserting the gene that codes for luciferase into the genome of the TB bacterial culture

taken from the patient. The gene is introduced through a viral vector and once

incorporated, the bacteria produces the luciferase. When luciferin i

s added to the culture, light is produced. Since less than 10,000 bacteria are needed to

code for enough luciferase to produce a detectable amount of light, the culture time is

reduced to only 2-3 days. Since the luciferase-luciferin reaction requires ATP, the

resistance of the strain in the culture can be tested by adding a drug and watching for

light. This will indicate which of the 11 drugs therapy’s will be effective in

treating Tuberculosis. By reducing the time needed to prescribe the correct drugs for

treatment, this application of bioluminescence will someday be ready to save some of the 3

million killed each year by tuberculosis (Patel 1997).


Bioluminescence has also been used for several years as a biosensor of many substances. As

seen in the tuberculosis example, bioluminescence can be used a sensor for the presence of

ATP because ATP is needed in the light producing reaction. Other techniques have been used

for detecting ions of mercury and aluminum, among others, by using bacteria with light

genes fused to their ion-resistant regulons. For example, if a bacteria that is resistant

to Hg is in the presence of Hg, the genes coding for its Hg resistance will be activated.

The activation of that gene will also activate the luciferase gene fused to it, so the

bacteria will produce luciferase whenever Hg is present. Adding luciferin and testing for

light production with a luminometer reveals the presence of the metal ion in the solution.

This technique is especially useful in testing for pollutants in the water supply when

concentrations are too low to detect by conventional means(Herring 1978, and Patel 1997).

Other areas that are currently using bioluminescence in scientific research include

evolution, ecology, histology, physiology, biochemistry, biomedical applications, cytology

and taxonomy. Any area that involves a living organism can utilize bioluminescent

technology as a biosensor.Conclusion The glow light generated by bioluminescent Fungi has for centuries

generated interest from philosophers and scientists and has benefited science by providing

problems to solve -How does it work and does it have a practical application? The answers

to those basic problems that have been discovered today and have resulted in benefiting

mankind, by bettering our lives especially in regard to it’s biomedical applications.

Further research with bioluminescent Fungi is being conducted on a world wide scale and

include North America, Japan, and Europe. Future research may lead to new discoveries and

uses from bioluminescent organisms such as the Fungi group.ReferencesBurr, G.J. 1985. Chemiluminescence and Bioluminescence. Marcel Dekker, Inc. New

York, U.S.A.Johnson, F. H. and Yata, H. 1966. Bioluminescence in progress. Princton, New

Jersey, Princeton University Press.Lincoff,G.H. 1981. The Audubon Society field guide to North American Mushrooms.

Knopf Inc. New York. U.S.A.Newton, H.E. 1952. Bioluminescence. Academic Press. New York. U.S.A.Herring, P.J. 1978. Bioluminescence in Action. Academic Press. New York. U.S.A.Patel, P.Y. 1997. Bioluminescence in scientific research. Jan 10, 1997.

Http://www. Pranovp@umich.edu.Wood, M.F. and Stevens, F. 1997. The Myko web page -Fungi Photos. Jan 10, 1997.






DUE MARCH 7, 1997