Расчёт структурной схемы

Дана структурная схема: Где: W1 = 10; W5 = K(1+10p) W6=10 / (1+2*10*0.2*p+102p2) 1. Получить передаточную функцию разомкнутой системы W(p) Вывод передаточной функции производится вручную любым из методов алгебраических и структурных преобразований блок - схемы.

Дана структурная схема:

Где:

W1 = 10;

W5 = K(1+10p)

W6 =10 / (1+2*10*0.2*p+102 p2 )

1. Получить передаточную функцию разомкнутой системы W(p)

Вывод передаточной функции производится вручную любым из методов алгебраических и структурных преобразований блок - схемы.

Перенесём средний сумматор против хода сигнала, преобразуем при этом схема станет:

Заменим звено с единичной ООС на эквивалентное:


Перенесём правый сумматор против хода сигнала, переставим местами сумматоры и получим звено суммы и звено с отрицательной обратной связью их эквивалентная передаточная функция:

2. Исследовать устойчивость разомкнутой системы от буквенного параметра методами Гурвица и Михайлова

Метод Михайлова:

Запишем характеристический полином системы:


D(p)=11000kp3 + (100+1540k)p2 + p(4+154k)+11k+1

D(p)=-11000jw3 - (100+1540k)w2 + jw(4+154k)+11k+1

U(w)=-(100+1540)w2 +11k+1

V(w)= -11000jw3 + jw(4+154k)

Для того, чтобы система находилась на границе устойчивости, необходимо чтобы:


Корень второго уравнения w=0 отбрасываем, т.к. для нахождения системы на границе устойчивости годограф Михайлова должен пройти через начало координат при w= 0.

Тогда из второго уравнения определяем

Подставим в первое и получим

1452k2 + 132k+5>0

тогда:

Метод Гурвица:

Запишем характеристический полином системы:


D(p)=11000kp3 + (100+1540k)p2 + p(4+154k)+11k+1

В общем виде

D(p) =a3 p3 +a2 p2 +a1 p+a0

Так как система имеет третий порядок, то она будет находиться на границе устойчивости при равенстве нулю выражения:

a1 a2 -a0 a3 = (4+154k)*(100+1540k) –11000k*(11k+1)=0

или1452k2 + 132k+5>0

что одинаково с выше полученным уравнением,

3. Получить передаточную функцию W(p) системы, замкнутой единичной отрицательной обратной связью

4. Исследовать устойчивость замкнутой системы от буквенного параметра методам Гурвица. Получить области устойчивых и неустойчивых значений параметра в классе вещественных чисел

Метод Михайлова:

Запишем характеристический полином системы:

Для того, чтобы система находилась на границе устойчивости, необходимо чтобы:

w2 =

512k2 + 1137k+5>0

Метод Гурвица:

Запишем характеристический полином системы:

Вобщемвиде

D(p) =a3 p3 +a2 p2 +a1 p+a0

Так как система имеет третий порядок, то она будет находиться на границе устойчивости при равенстве нулю выражения:

a1 a2 -a0 a3 = (4+1014k)*(100+140k) –1000k*(101k+11)=0

512k2 + 1137k+5>0

5. Сформировать набор значений параметра, включающий все граничные и по одному из каждого интервала устойчивости и неустойчивости замкнутой системы

k1 = -2.2163, k2 = - 0,0044, k3=1, k4 = -10 k5 = -1

6. Для каждого значения параметра из набора построить частотные характеристики, необходимые для исследования зависимости устойчивости замкнутой системы от параметра по критериям Найквиста и Михайлова

Вобщемвиде

D(p) =a3 p3 +a2 p2 +a1 p+a0

Годограф Михайлова построим по формулам c помощью пакета MAPLE:

Из графика видно, что гадограф Михайлова, начавшись с положительной действительной оси обходит последовательно 3 квадранта против часовой стрелки, проходя через ноль, следовательно замкнутая система находится на границе устойчивости

Проведем анализ при k2 = -0,0044 по критерию Найквиста с помощью пакета MatLab:

k1=tf([44 6,16 –3,784 9,604],[-48,4 93,224 3,3224 0,9516])

subplot(121)

nyquist(k1,'b')


Из рисунка видно, что АФХ системы проходит через точку (-1;j0) , следовательно, замкнутая система на границе устойчивости.

Теперь рассмотрим точку

Метод Михайлова:


Из графика видно, что годограф Михайлова, начавшись с положительной действительной оси обходит последовательно 3 квадранта против часовой стрелки, следовательно, замкнутая система устойчива.

Проведем анализ k4 = -10 по критерию Найквиста с помощью пакета MatLab:

i1=tf([100000 14000 -8600 -890],[-110000 –15300 –1536 -109])

subplot(211)

pzmap(i1,'b')

subplot(212)


nyquist(i1,'b')

Из расположения корней на комплексной плоскости видно, что система не имеет корней с положительной вещественной частью, а АФХ системы не охватывает точку (-1;j0) , следовательно, замкнутая система устойчива.

Исследуем точку

Метод Михайлова:

Из графика видно, что годограф Михайлова, начавшись с положительной действительной оси не обходит последовательно 3 квадранта против часовой стрелки, следовательно, замкнутая система неустойчива.

7. Получить оценки качества временных характеристик разомкнутой системы

i1=tf([-22163 –3102,82 1906,018 189,467],[24379,3 3313,102 337,3102 23,3793])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')


i1=tf([99.89 9.989 99.89 20],[99.89 11.989 100.9 2])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

Как видно, процесс имеет экспоненциальный характер.

i1=tf([0.005 0.0005 0.005 20],[0.005 2.0005 0.205 2])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

i1=tf([50 5 50 20],[50 7 50.2 2])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

Как видно, процесс имеет экспоненциальный характер.

i1=tf([50 5 50 20],[150 17 150.2 2])

subplot(211)

step(i1,'b')

subplot(212)

pzmap(i1,'b')

i2=impulse(i1)

Как видно, процесс имеет экспоненциальный характер.