Мир Знаний

Аналитическая химия (стр. 2 из 3)

Р. Бойль систематически использовал экстракты растений (лакмус, фиалка и др.) и животных тканей для определения кислотности и щелочности растворов; например, он установил, что в щелочном растворе экстракт фиалки становится зеленым. Известное с древних времен свойство экстракта дубильных орешков окрашиваться в присутствии железа и меди было дополнено наблюдением, что интенсивность возникающей при этом окраски связана с содержанием металла в растворе. Известно, что Бойль судил о составе осадков по форме образующихся кристаллов; он проводил фракционную кристаллизацию. Бойль отделил химию от медицины, это был конец эпохи иатрохимии.

Время теории флогистон а. В XVIII в. многое было сделано в области изучения газов. Создателями газового анализа были работавшие примерно в одно время Г.Кавевдиш (показал, что вода — сложное вещество), Дж. Пристли, К. Шееле, Дж. Блэк. С их именами связано открытие кислорода и водорода, а также много других открытий. Например, шведский ученый К. Шееле получил щавелевую кислоту, которую сам и предложил впервые как реагент на кальций. Одним из ведущих аналитиков XVIII столетия был А. Маргграф, который начал использовать микроскоп в химическом анализе, ввел новые методы, в том числе способ определения серебра с помощью хлорида.

В качестве курьеза отметим, что венгерский ученый Я. Винтерль опубликовал способ определения флогистона.

Крупнейшим аналитиком XVIII в. был шведский химик Т. Бергман (1735—1784). Он впервые провел различие между качественным и количественным анализом, обобщил накопленный к тому времени материал о применении паяльной трубки в анализе. В те времена паяльная трубка была мощным инструментом аналитического исследования; например, с ее помощью был установлен качественный состав многих минералов, открыто немало элементов. Особенно крупной заслугой Бергмана было то, что он установил влияние углерода и фосфора на свойства железа. Точное определение содержания углерода в разных образцах железа, полученного с использованием каменного угля, открыло дорогу современной металлургии. Сейчас все знают, чем отличаются, скажем, сталь и чугун. Хотя химический анализ и был известен за две тысячи лет до Бергмана, этот шведский ученый придал ему статус отдельного направления науки — аналитической химии, создал первую схему качественного химического анализа.

Период научной химии. Конец XVIII — начало XIX вв. характеризовались общеизвестными открытиями А. Л. Лавуазье (кислородная теория горения, закон сохранения вещества, различие между элементами и соединениями), похоронившими теорию флогистона.

В этот период произошло становление законов стехиометрии — фундаментальной базы аналитической химии. У истоков этих исследований стоял немецкий ученый И. В. Рихтер. В студенческие года на него большое впечатление произвели слова его учителя философа Э, Канта о том, что в отдельных направлениях естественных наук истинной науки столько, сколько в ней математики. Рихтер посвятил свою диссертацию использованию математики в химии. Не будучи в сущности химиком, Рихтер ввел первые количественные уравнения химических реакций, стал использовать термин “стехиометрия”, начал определять атомные веса.

Идея о том, что химические соединения имеют определенный, четко устанавливаемый состав (развитая далее Ж. Л. Прустом, и особенно Дж. Дальтоном), встретила возражения французского химика К. Л. Бертолле. Он опубликовал теорию, согласно которой состав химического соединения, образуемого двумя элементами, может меняться в любых пределах и соотношениях. “Будь эта теория правильна, — пишут историки химии, — она разрушила бы всю теоретическую базу количественного анализа того времени”.

Закон кратных отношений (Дальтон), шкала атомных весов — все это действительно легло в основу количественного химического анализа.

Знаменитый шведский химик Я. Берцелиус (1779—1848) продолжал линию И. Рихтера, на основе анализа оксидов он определил атомные веса почти всех известных тогда элементов, ввел символы элементов, химические формулы, активно проводил аналитические расчеты на основе правил стехиометрии. Берцелиус стоял у истоков метрологии анализа. Он оценивал ошибки определений, разработал точные методы взвешивания, ему принадлежит методика определения платиновых металлов. Шведский ученый пытался создать новую схему качественного анализа. При анализе силикатов Берцелиус применил фтористоводородную кислоту — прием, широко используемый и по сей день; использовал возгонку хлоридов для разделения металлов.

Первые руководства по химическому анализу появились еще во времена алхимии. В XVII в. их было уже немало. В 1790 г. в Иене была издана книга И. Гетглинга “Полная химическая пробирная палата”, в 1799 г. во Франции — труд Л. Н. Воклена “Руководство испытателя”, В. А. Лампадиус в 1801 г. опубликовал “Руководство по химическому анализу минеральных веществ”, где появляется термин “аналитическая химия”, термин приживается, например, в книге К. Праффа “Руководство по аналитической химии для химиков, государственных врачей, аптекарей, сельских хозяев и рудознатцев” (1821).

В аналитической химии до самого последнего времени большое значение имел систематический качественный анализ. Если еще раз взглянуть на историю качественного химического анализа, то можно отметить некоторые ее вехи. Р. Бойль, видимо, первым использовал сероводород как химический ре 1гент для обнаружения олова и свинца. Бергман сделал сероводород одним из главных реактивов, использовав его для получения осадков со многими металлами. В этом направлении много работали также Ж. Л. Гей-Люссак и другие химики ХГХ в. Отдельные качественные реакции накапливались еще со средних веков, в числе относительно новых можно назвать реакцию иода с крахмалом (Ф. Штромайер, 1815), фосфора с молибдатом (Л. Ф. Сванберг, 1848). Для получения сероводорода стали использовать аппарат Киппа (1864). “Современная” сероводородная схема качественного анализа оформилась в трудах Г. Розе, К. Р. Фрезениуса и др. Позднее, в основном в нынешнем веке, были предложены и другие схемы.

В числе методов количественного анализа к середине XIX в. оформились титриметрические, гравиметрические методы, способы элементного органического анализа, методы газового анализа.

Основы титриметрического метода были заложены еще в середине XVIII столетия, метод родился как ответ на требования промышленности. Это пример метода, который развивался под напором практических задач. Первыми и главными собственно химическими продуктами промышленности были серная и соляная кислоты, сода и хлорная вода; их применяли, например, при отбеливании тканей. Производство и применение химических веществ требовалось контролировать. Еще в 1726 г. К. Ж. Жоффруа осуществил нейтрализацию кислот в аналитических целях. Уксусную кислоту нейтрализовали карбонатом калия; индикатором, свидетельствующим о конце такого “титрования”, служило прекращение выделения газа.

К 1750 г. в качестве титранта стали использовать раствор с известной концентрацией, а индикатором служил фиалковый экстракт. Важное прикладное значение имело использование титриметрии в процессе отбеливания тканей во Франции (Ф. Декруазиль и др.); в 1795 г. был предложен метод определения гипохлорита. Здесь были отработаны устройства для титрования — пипетки, бюретки, мерные колбы. Ж. Л. Гей-Люссак позднее предложил индиго в качестве индикатора для окислительно-восстановительного титрования. Он ввел и термин “титрование”.

Гравиметрический (весовой) анализ подробно описан в учебнике К. Р. Фрезениуса (1846, русский перевод 1848). Метод основывался на количественном выделении нужного вещества в осадок, высушивании, прокаливании и взвешивании. Позднее (1883) были предложены беззольные фильтры, фильтрующие тигли Ф.Гуча (1878), органические осадигели. Уже в XX и. появились осаждение “из гомогенного раствора”, термогравиметрия.

По существу, гравиметрическим был и элементный анализ органических веществ. Первые анализы такого рода выполнял А. Л. Лавуазье; он нашел, например, что в спирте соотношение С:Н равно 3,6:1 (истинное 4:1). Основную классическую схему анализа на углерод и водород разработал немецкий химик Ю. Либих в первой половине XIX в. Француз Ж. Б. Дюма предложил (1831) метод определения азота, но сейчас большее значение имеет метод И. Кьельдаля (1883). Много позднее австрийский ученый Ф. Прегль разработал способы микроанализа, за которые был удостоен Нобелевской премии (1923).

Из наиболее известных книг XIX в. отметим “Руководство по аналитической химии” Г. Розе (1829), “Руководство по качественному химическому анализу” К. Р. Фрезениуса (1841). В России в конце ХГХ в. был широко распространен учебник “Аналитическая химия”, написанный Н. А. Меншуткиным, издававшийся 16 раз, в том числе и после революции.

Аналитические реагенты традиционно были неорганическими и органическими (экстракты дубильных орешков или фиалок, щавелевая кислота). Во второй половине XIX в. число органических соединений, используемых для анализа, увеличивается. Предложен (1879) реактив Грисса на нитрит-ион (смесь нафтиламина и сульфаниловой кислоты дает с нитритом красное окрашивание). М. А. Ильинский (1885) использовал 1-нитрозо-2-нафтол в качестве реагента на кобальт. Большое значение имели работы Л. А. Чугаева, применившего диметилглиоксим для обнаружения и определения никеля.

Так называемые инструментальные методы анализа известны тоже давно — если считать весы аналитическим прибором. Первые попытки использовать электрогравиметрию относят к началу прошлого столетия, количественные определения (меди, никеля, серебра) этим методом проводятся с 1864 г.