Смекни!
smekni.com

Информация: понятия, виды, получение, измерение и проблема обучения (стр. 2 из 4)

Информация не существует без других типов ресурсов - энергии, вещества, организации, как и они не могут существовать без информации. Любые взаимодействия систем (подсистем) - взаимодействия всегда материально-энерго-информационные. Выявление (структурирование, упорядочивание, установление отношений), формализация (описание формальными средствами, языками), изучение (разработка моделей, методов, алгоритмов), применение (разработка и актуализация технологий) этих взаимодействий и составляет основную задачу информатики - как науки, как человеческой деятельности.

2. Методы получения, использования информации

Методы получения и использования информации можно разделить на три группы, условно разграничиваемые и часто перекрываемые друг другом.

Эмпирические методы или методы получения эмпирической информации (эмпирических данных).

Теоретические методы или методы получения теоретической информации (построения теорий).

Эмпирико - теоретические методы (смешанные, полуэмпирические) или методы получения эмпирико-теоретической информации.

Охарактеризуем кратко эмпирические методы.

Наблюдение - сбор первичной информации о системе (в системе).

Сравнение - установление общего и различного в системе (системах).

Измерение - нахождение эмпирических законов, фактов для системы.

Эксперимент - целенаправленное преобразование системы (систем).

Кроме этих классических форм их реализации в последнее время используются и такие формы как опрос, интервью, тестирование и др.

Охарактеризуем кратко эмпирико - теоретические методы.

Абстрагирование - установление общих свойств объекта (объектов), замещение системы ее моделью.

Анализ - разъединение системы на подсистемы с целью выявления их взаимосвязей.

Синтез - соединение подсистем в систему с целью выявления их взаимосвязей.

Индукция - получение знания о системе по знаниям о подсистемах.

Дедукция - получение знания о подсистемах по знаниям о системе.

Эвристики, использование эвристических процедур - получение знания о системе по знаниям о подсистемах и наблюдениям, опыту.

Моделирование, использование приборов - получение знания об объекте с помощью модели и/или приборов.

Исторический метод - нахождение знаний о системе путем использования его предыстории.

Логический метод - метод нахождения знаний о системе путём воспроизведения его подсистем, связей или элементов в мышлении, в сознании.

Макетирование - получение информации по макету системы, т.е. с помощью представления подсистем в упрощенном виде, сохраняющем информацию, необходимую для понимания взаимодействия и связей этих подсистем.

Актуализация - получение информации с помощью активизации, инициализации её, т.е. переводом из статического (неактуального) состояния в динамическое (актуальное) состояние; при этом все необходимые связи и отношения (открытой) системы с внешней средой должны быть сохранены.

Визуализация - получение информации с помощью визуального представления состояний актуализированной системы; визуализация предполагает возможность выполнения операции типа “передвинуть”, “повернуть”, “укрупнить”, “уменьшить”, “удалить”, “добавить” и т.д. (как по отношению к отдельным элементам, так и к подсистемам системы).

В последнее время часто используются и такие формы как мониторинг (система наблюдений и анализа состояний системы), деловые игры и ситуации, экспертные оценки (экспертное оценивание), имитация (имитационная процедура, эксперимент) и др.

Охарактеризуем кратко теоретические методы.

Восхождение от абстрактного к конкретному - получение знаний о системе на основе знаний о его проявлениях в сознании, в мышлении.

Идеализация - получение знаний о системе или о ее подсистемах путём мысленного конструирования, представления в мышлении систем и/или подсистем, не существующих в действительности.

Формализация - получение знаний о системе с помощью знаков или же формул, т.е. языков искусственного происхождения, например, языка математики (или математическое, формальное описание, представление).

Аксиоматизация - получение знаний о системе или процессе с помощью некоторых, специально для этого сформулированных аксиом и правил вывода из этой системы аксиом.

Виртуализация - получение знаний о системе созданием особой среды, обстановки, ситуации, которую реально, без этой среды невозможно реализовать и получить соответствующие знания.

Все эти методы получения информации обычно применяются многоуровневым комплексным образом и можно предложить схему

3. Измерениесообщений и информации

Если отвлечься от конкретного смыслового содержания информации и рассматривать сообщения информации как последовательности знаков, сигналов, то их можно представлять битами, а измерять в байтах, килобайтах, мегабайтах, гигабайтах, терабайтах и петабайтах.

Выше было отмечено, что информация может пониматься и интерпретироваться по разному. Вследствие этого имеются различные подходы к определению методов измерения информации, меры количества информации. Раздел информатики (теории информации) изучающий методы измерения информации называется информметрией.

Количество информации - числовая величина, адекватно характеризующая актуализируемую информацию по разнообразию, сложности, структурированности, определённости, выбору (вероятности) состояний отображаемой системы.

Если рассматривается система, которая может принимать одно из n возможных состояний, то актуальна задача оценки такого выбора, исхода. Такой оценкой может стать мера информации (или события). Мера - это некоторая непрерывная действительная неотрицательная функция, определённая на множестве событий и являющаяся аддитивной т.е. мера конечного объединения событий (множеств) равна сумме мер каждого события.

1. Мера Р. Хартли. Пусть имеется N состояний системы S или N опытов с различными, равновозможными последовательными состояниями системы. Если каждое состояние системы закодировать, например, двоичными кодами определённой длины d, то эту длину необходимо выбрать так, чтобы число всех различных комбинаций было бы не меньше, чем N. Наименьшее число, при котором это возможно или мера разнообразия множества состояний системы задаётся формулой Р. Хартли: H=k logа N, где k - коэффициент пропорциональности (масштабирования, в зависимости от выбранной единицы измерения меры), а - основание системы меры.

Если измерение ведётся в экспоненциальной системе, то k=1, H=lnN (нат); если измерение - в двоичной системе, то k=1/ln2, H=log2N (бит); если измерение - в десятичной системе, то k=1/ln10, H=lgN (дит).

Пример. Чтобы узнать положение точки в системе из двух клеток т.е. получить некоторую информацию, необходимо задать 1 вопрос ("Левая или правая клетка?"). Узнав положение точки, мы увеличиваем суммарную информацию о системе на 1 бит (I=log2 2). Для системы из четырех клеток необходимо задать 2 аналогичных вопроса, а информация равна 2 битам (I=log24). Если система имеет n различных состояний, то максимальное количество информации равно I=log2 n.

Справедливо утверждение Хартли: если во множестве X={x1, x2, ..., xn} выделить произвольный элемент xX, то для того, чтобы найти его, необходимо получить не менее loga n (единиц) информации.

По Хартли, для того, чтобы мера информации имела практическую ценность - она должна быть такова, чтобы отражала количество информации пропорционально числу выборов.

Пример. Имеются 192 монеты из которых одна фальшивая. Определим сколько взвешиваний нужно произвести, чтобы определить ее. Если положить на весы равное количество монет, то получим 2 возможности (мы сейчас отвлекаемся от того, что в случае фальшивой монеты таких состояний будет два - состояния независимы): а) левая чашка ниже; б) правая чашка ниже. Таким образом, каждое взвешивание дает количество информации I=log22=1 и, следовательно, для определения фальшивой монеты нужно сделать не менее k взвешиваний, где k удовлетворяет условию log22log2192. Отсюда, k³ 7 или, k=7. Следовательно, нам необходимо сделать не менее 7 взвешиваний (достаточно семи).

Пример. ДНК человека можно представить себе как некоторое слово в четырехбуквенном алфавите, где каждой буквой помечается звено цепи ДНК или нуклеотид. Определим сколько информации (в битах) содержит ДНК, если в нем содержится примерно 1,5´ 1023 нуклеотидов. На один нуклеотид приходится log2(4)=2 (бит) информации. Следовательно, структуры ДНК в организме человека позволяет хранить 3´ 1023 бит информации. Это вся информация, куда входит и избыточная. Реально используемой, - структурированной в памяти человека информации, - гораздо меньше. В этой связи, заметим, что человек за среднюю продолжительность жизни использует около 5 — 6 % нейронов (нервных клеток мозга - “ячеек ОЗУ человека”). Генетический код - чрезвычайно сложная и упорядоченная система записи информации. Информация заложенная в генетическом коде (по учению Дарвина) накапливалась многие тысячелетия. Хромосомные структуры - своеобразный шифровальный код и при клеточном делении создаются копии шифра, каждая хромосома - удваивается, в каждой клетке имеется шифровальный код, при этом каждый человек получает, как правило, свой набор хромосом (код) от матери и от отца. Шифровальный код разворачивает процесс эволюции человека. Вся жизнь, как отмечал Э. Шредингер, “упорядоченное и закономерное поведение материи, основанное ... на существовании упорядоченности, которая поддерживается всё время”.

Формула Хартли отвлечена от семантических и качественных, индивидуальных свойств рассматриваемой системы (качества информации, содержащейся в системе, в проявлениях системы с помощью рассматриваемых N состояний системы). Это основная положительная сторона этой формулы. Но имеется и основная отрицательная сторона: формула не учитывает различимость и различность рассматриваемых N состояний системы.