Смекни!
smekni.com

Этапы развития и парадигмы естествознания (стр. 5 из 9)

Видный физик нашего времени В.Хейзенберг, высоко оценивая методологические принципы Галилея, особо отмечал две характерные особенности его нового метода:

а) выраженное стремление реализовывать точный эксперимент, который каждый раз завершается созданием идеализированных феноменов (объектов);

б) сравнение полученных идеальных феноменов с математическими структурами, принимаемыми как законы природы. На новаторский характер методологических поисков Галилея обратил внимание и Пол Фейерабенд. Он, отмечая наличие так называемого неисчерпаемого материала для методологических соображений в творчестве Галилея, говорил о наличии замены эмпирической практики практикой, которая полна концептуальных элементов. П.Фейерабенд писал по этому поводу следующее: «Галилей нарушил важные правила узаконенного метода логических позитивистов (Карпара, Поппера и др), который был открыт Аристотелем. Галилей только поэтому достиг успеха, что он не следовал этим правилам».

Способ мышления Галилея отталкивался от мысли о том, что без прямого участия ума только посредством познавательных чувств невозможно достигнуть истинного познания природы; для познания природы необходимы ум и сопровождаемые интеллектом чувства. Намного позже, принимая во внимание принцип относительности, А.Энштейн и Л.Инфельд писали: «Открытия Галилея и применяемый им метод научного наблюдения был одним из самых больших достижений в истории человеческой мысли, которое заложило начало физики. Эти открытия учат нас тому, что нельзя все время полагаться только на интуитивные результаты, основанные на наблюдениях; другими словами иногда несут на себе след неправды».

Другой представитель механического естествознания, Иохан Кеплер (1571-1630) открыл три закона движения планет вокруг Солнца:

Первый закон: каждая планета вращается по эллипсу Солнца, который находится в одном их фокусе (по Копернику планета вращается по кругу).

Второй закон: Проведенный от Солнца к планете радиус-вектор за равные промежутки времени очерчивает равные области: с приближением планеты к Солнцу увеличивается скорость ее движения.

Третий закон: Соотношение квадратов периодов вращения планет вокруг Солнца равно соотношению кубов их расстояния до Солнца.

Кроме этих законов Кеплер предложил теорию затмения Солнца и Луны, разработал способы предсказывания этих явлений заранее, установил точное расстояние между Землей и Солнцем. Вместе со всем этим Кеплер не смог объяснить причину вращения планет вокруг солнца, таким образом динамика – физическое учение о силах и о их взаимном влиянии – была создана позднее Ньютоном. Возникновение Теоретического наследия второй научной революции в области классического естествознания стало возможным благодаря очень богатому и разнообразному творчеству И.Ньютона (1643-1727). Намекая на плодотворность своего научного творчества Ньютон писал: «Я стою на плечах гигантов».

Главный труд Ньютона – книга «Математические основы натурфилософии» (1684). За отображение образа Джона Бернали эту книгу назвали «библией новой науки», «источником последующего развития методов, изложенных в Библии». Ньютон в этой книге и в других своих произведениях сформулировал понятие и законы классической механики, открыл формулу закона всемирного тяготения; основываясь на теоретическую сторону законов Кеплера, создал небесную механику и с единой токи зрения объяснил большой объем практических фактов (неравномерность движения Земли, Луны, планет; морские приливы и отливы и др.) Кроме этого Ньютон независимо от немецкого ученого Лейбница создал дифференциальный и интегральный расчеты как адекватный язык математического описания физической реальности. Он также был автором описаний многих физических представлений, в том числе корпускулярных представлений о природе света, атомарной структуры материи, принципа механической причинности и т.д. Как отмечал Эйнштейн, в произведениях Ньютона сделана попытка создать теоретические основы физики и других наук. По свидетельству Эйнштейна, заложенный ньютоном фундамент был очень плодотворным и сумел сохранить ее до конца XIX века.

Научный метод Ньютона ставил цель противопоставить достоверные природно-научные знания вымыслам натурфилософии и безосновательным умственным комбинациям. Его знаменитое заключение в физике «гипотезу не придумываю» стало главным лозунгом в этом противопоставлении.

Ньютоновские так называемые «принципы», под которыми понимается содержательная идея научного метода, переносятся на следующие процессы:

осуществление практики, наблюдения, экспериментов,

отделение в чистом виде посредством индукции разных сторон природных процессор и превращение их в объект наблюдения;

познание сущности фундаментальных закономерностей, принципов, основных понятий, которые управляют процессами;

реализация математического выражения принципов, другими словами выражение взаимосвязи природных процессов посредством математических формул;

создание целой теоретической системы на основе дедуктивного способа раскрытия содержания фундаментальных принципов;

использование сил природы и применение их в технике.

На основе «метода принципов» Ньютона были сделаны существенные открытия, были разработаны новые методы.

Ньютон с помощью своего метода решил три координальные проблемы. Прежде всего, четко отделив научные умственные комбинации от натурфилософии, Ньютон дал обоснованную критику последней. Выражение Ньютона «Берегите физику от метафизики!» может подтвердить нашу мысль. Под натурфилософией Ньютон понимал «тонкую науку о природе», теоретико-математическое учение о природе.

Во-вторых, Ньютон разработал классическую механику как систему знаний о механических движениях тел. Его теория как классический пример и эталон научных теорий дедуктивного типа не потеряла своего значения вплоть до современного периода.

В-третьих, Ньютон, сформулировав основные идеи, понятия, принципы, формирующих картину механического мира, завершил начавшуюся вторую в истории науки глобальную революцию.

Основное содержание созданной Ньютоном механической картины мира характеризуется следующими особенностями:

1. От атома до человека весь мир, вся Вселенная понимается как совокупность частичек, движущихся в относительном пространстве и времени, движущихся с бесконечной скоростью и мгновенно распространяющихся в бесконечном количестве размножающихся и не изменяющихся.

2. Отражение в механической картине мира сформировалось из вещества, состоящего из мировых элементарных объектов-атомов, а тела из неделящихся корпускулляров-атомов. Основными понятиями, использующимися в описании механических процессов, стали «тело» и «корпускулы».

3. Движение атомов и молекул описывалось как изменение их траектории в абсолютном времени и абсолютном пространстве. В этой концепции пространство понималось как неизменное поле для особенностей, для действий составляющих тел; время как продолжительность, не зависящая от механических движений и взаимных влияний между телами.

4. В механической панораме мира природа понималась как простая машина, прочно связывающая разные части.

5. Одну из существенных особенностей механической картины мира также составляет перенос на основе редукционизма различных процессов и явлений на механические процессы.

Не смотря на ограниченный уровень развития естествознания в XVII веке, механическая картина мира играла положительную роль в развитии науки и философии, освободила многие события от мифологического и схоластического изложения и дала им природно-научное изложение, направляла познание природы исходя из нее самой, природных причин и законов природных явлений. Но материалистическое направление механической картины Ньютона освободило его от целого ряда недостатков и ограничений. Один из недостатков состоит в том, что «эта картина не имела научного содержания ни о жизни, ни о человеке. Но она предоставила возможность с большой точностью рассмотреть то, на что наука до этого времени не обращала существенного внимания – предсказать заранее события, предвидеть их существование».

Не смотря на все свои недостатки, механическая картина мира оказывала долгое время значительное влияние на развитие всех других областей науки. В тот период развитие целого ряда областей научного познания определялось прежде всего влиянием на них механической картины мира. Например, в период возмущения алхимией в Европе английский ученый Р.Бойл применял в химии целый ряд принципов и объяснительных примеров механики.

Механическая картина мира наложила отпечаток и на развитие биологии. Так, рассматривая природные причины развития организмов, Ламарк опирался на принцип «невесомости» механической картины. Он предполагал, что только «невесомость» формирует источник движения и развития живых организмов.

Механическая картина мира оказала также значительное влияние и на знания о человеке и обществе.

Однако механическая картина мира, совершая экспансию во все новые области науки, сталкиваясь с необходимостью принимать во внимание особенности которые требовали новых, не механических описаний этих областей. Собранные факты осложняли их соотношение с принципами механической картины мира. Механическая картина мира постепенно теряла свой универсальный характер и распадалась на целый ряд специальных – научных картин. Расшатывались основы механической картины мира. В середине XIX века эта картина полностью утратила свой общенаучный статус.

б) Эволюционный период классического естествознания.