Смекни!
smekni.com

Сравнительные характеристики трёх наиболее эффективных алгоритмов рисования отрезка (стр. 2 из 3)

Линия - это элементарный объект векторной графики. Все, что есть в векторной иллюстрации, состоит из линий. Простейшие объекты объединяются в более сложные, например, объект четырехугольник можно рассматривать как четыре связанные линии, а объект куб еще более сложен: его можно рассматривать либо как двенадцать связанных линий, либо как шесть связанных четырехугольников. Из-за такого подхода векторную графику часто называют объектно-ориентированной графикой.

Объекты векторной графики хранятся в памяти в виде набора параметров, но надо помнить о том, что на экран все изображения все равно выводятся в виде точек. Перед выводом на экран каждого объекта программа производит вычисления координат экранных точек в изобра жении объекта, поэтому векторную графику иногда называют вычисляемой графикой. Аналогичные вычисления производятся и при выводе объектов на принтер.

Как и все объекты, линии имеют свойства. К этим свойствам относятся: форма линии, ее толщина, цвет, характер линии (сплошная, пунктирная и т.п.). Замкнутые линии имеют свойство заполнения. Внутренняя область замкнутого контура может быть заполнена цветом, текстурой, картой. Простейшая линия, если она не замкнута, имеет две вершины, которые называются узлами. Узлы тоже имеют свойства, от которых зависит, как выглядит вершина линии и как две линии сопрягаются между собой.

1.4 Алгоритмы вычерчивания отрезков

Поскольку экран растрового дисплея с электронно-лучевой трубкой (ЭЛТ) можно рассматривать как матрицу дискретных элементов (пикселов), каждый из которых может быть подсвечен, нельзя непосредственно провести отрезок из одной точки в другую. Процесс определения пикселов, наилучшим образом аппроксимирующих заданный отрезок, называется разложением в растр. В сочетании с процессом построчной визуализации изображения он известен как преобразование растровой развертки. Для горизонтальных, вертикальных и наклоненных под углом 45° отрезков выбор растровых элементов очевиден. При любой другой ориентации выбрать нужные пикселы труднее, что показано на рис. 1.1.

Рис. 1.1 Разложение в растр отрезков прямых

Прежде чем приступать к обсуждению конкретных алгоритмов рисования отрезков, полезно рассмотреть общие требования к таким алгоритмам и определить желаемые характеристики изображения. Очевидно, что отрезки должны выглядеть прямыми, начинаться и заканчиваться в заданных точках. Яркость вдоль отрезка должна быть постоянной и не зависеть от длины и наклона. Наконец, рисовать нужно быстро. Как это часто бывает, не все из перечисленных критериев могут быть полностью удовлетворены. Сама природа растрового дисплея исключает генерацию абсолютно прямых линий (кроме ряда специальных случаев), равно как и точное совпадение начала и конца отрезка с заданными точками. Тем не менее при достаточно высоком разрешении дисплея можно получить приемлемое изображение.

Постоянная вдоль всего отрезка яркость достигается лишь при проведении горизонтальных, вертикальных и наклоненных под углом 45 ° прямых. Для всех других ориентации разложение в растр приведет к неравномерной яркости, как это показано на рис. 2.1. Даже для частных случаев яркость зависит от наклона: заметим, например, что расстояние между центрами соседних пикселов для отрезка под углом 45° больше, чем для вертикальных и горизонтальных прямых. Поэтому вертикальные и горизонтальные отрезки будут выглядеть ярче, чем наклонные. Обеспечение одинаковой яркости вдоль отрезков разных длин и ориентации требует извлечения квадратного корня, а это замедлит вычисления. Обычным компромиссом является нахождение приближенной длины отрезка, сведение вычислений к минимуму, предпочтительное использование целой арифметики, а также реализация алгоритмов на аппаратном или микропрограммном уровне.

2 Алгоритмы генерации отрезков

2.1 Цифровой Дифференциальный анализатор

Один из методов разложения отрезка в растр состоит в решении дифференциального уравнения, описывающего этот процесс. Для прямой линии имеем

Решение представляется в виде

где x1, y1 и x2, y2 - концы разлагаемого отрезка и yi - начальное значение для очередного шага вдоль отрезка. Фактически уравнение [1] представляет собой рекурентное соотношение для последовательных значений y вдоль нужного отрезка. Этот метод, используемый для разложения в растр отрезков, называется цифровым дифференциальным анализатором (ЦДА). Впростом ЦДА либо Dx, либо Dy (большее из приращений) выбирается в качестве единицы растра. Ниже приводится простой алгоритм, работающий во всех квадрантах:

Процедура разложения в растр отрезка по методу цифрового дифференциального анализатора (ЦДА)

предполагается, что концы отрезка (x1, y1) и (x2, y2) не совпадают

Integer - функция преобразования вещественного числа в целое.

Sign - функция, возвращающая -1, 0, 1 для отрицательного, нулевого и положительного аргумента соответственно

аппроксимируем длину отрезка

if abs(x2 - x1) >= abs(y2 - y1) then

Длина = abs(x2 - x1) else

Длина = abs(y2 - y1) end

полагаем большее из приращений x или y равными единице растра

x = (x2 - x1) // Длина

y = (y2 - y1) // Длина

округляем величины, а не отбрасываем дробную часть

использование знаковой функции делает алгоритм пригодным для всех квадрантов

x = x1 + 0.5 * Sign(x)

y = y1 + 0.5 * Sign(y)

начало основного цикла

i =1

while (i <= Длина)

вывод точки PutPixel (Integer(x), Integer(y))

x = x + x

y = y + y

i = i + 1

end

2.2 Алгоритм Брезенхема

В 1965 году Брезенхеймом был предложен простой целочисленный алгоритм для растрового построения отрезка. Алгоритм выбирает оптимальные растровые координаты для представления отрезка. В процессе работы одна из координат — либо x, либо у (в зависимости от углового коэффициента) — изменяется на единицу. Изменение другой координаты (либо на нуль, либо на единицу) зависит от расстояния между действительным положением отрезка и ближайшими координатами сетки. Такое расстояние мы назовем ошибкой.

Алгоритм построен так, что требуется проверять лишь знак этой ошибки. На рис. 1.2 это иллюстрируется для отрезка в первом октанте, т. е. для отрезка с угловым коэффициентом, лежащим в диапазоне от нуля до единицы. Из рисунка можно заметить, что если угловой коэффициент отрезка из точки (0, 0) больше чем 1/2, то его пересечение с прямой х = 1 будет расположено ближе к прямой у = 1, чем к прямой у = 0. Следовательно, точка растра (1, 1) лучше аппроксимирует ход отрезка, чем точка (1, 0). Если угловой коэффициент меньше 1/2, то верно обратное. Для углового коэффициента,

Рис. 1.2 Основная идея алгоритма Брезенхема

равного 1/2, нет какого-либо предпочтительного выбора. В данном случае алгоритм выбирает точку (1, 1).

Рис. 1.3 График ошибки в алгоритме Брезенхема

Не все отрезки проходят через точки растра. Подобная ситуация иллюстрируется рис. 1.3, где отрезок с тангенсом угла наклона 3/8 сначала проходит через точку растра (0, 0) и последовательно пересекает три пиксела. Также иллюстрируется вычисление ошибки при представлении отрезка дискретными пикселами. Так как желательно проверять только знак ошибки, то она первоначально устанавливается равной —1/2. Таким образом, если угловой коэффициент отрезка больше или равен 1/2, то величина ошибки в следующей точке растра с координатами (1,0) может быть вычислена как

е = е + m

где m — угловой коэффициент. В нашем случае при начальном значении ошибки —1/2

е = -1/2+ 3/8 = -1/8

Так как е отрицательно, отрезок пройдет ниже середины пиксела. Следовательно, пиксел на том же самом горизонтальном уровне лучше аппроксимирует положение отрезка, поэтому у не увеличивается. Аналогично вычисляем ошибку

е = -1/8 + 3/8 = 1/4

в следующей точке растра (2, 0). Теперь е положительно, а значит, отрезок пройдет выше средней точки. Растровый элемент (2, 1) со следующей по величине координатой у лучше аппроксимирует положение отрезка. Следовательно, у увеличивается на единицу. Прежде чем рассматривать следующий пиксел, необходимо откорректировать ошибку вычитанием из нее единицы. Имеем

е = 1/4- 1 = -3/4

Заметим, что пересечение вертикальной прямой х = 2 с заданным отрезком лежит на 1/4 ниже прямой y = 1. Если же перенести отрезок 1/2 вниз, мы получим как раз величину -3/4. Продолжение вычислений для следующего пиксела дает

e = - 3/4 + 3/8 = - 3/8

Так как e отрицательно, то .у не увеличивается. Из всего сказанного следует, что ошибка — это интервал, отсекаемый по оси у рассматриваемым отрезком в каждом растровом элементе (относительно —1/2).

3. Описание программы

3.1. Описание интерфейса

Реализация каждого метода генерации отрезков проводилась в среде объектно-ориентированного программирования Delphi 7. Поставлена задача запрограммировать алгоритмы генерации отрезков, создать форму для ввода данных и вывода результата.

Для каждого из трех алгоритмов создается окно приложения (рис. 1.4).