Смекни!
smekni.com

Земля как планета солнечной системы. Проблемы целостного освоения Земли (стр. 5 из 8)

* столкновения с крупными астероидами, которые могут привести к глобальным катастрофам в развитии Земли, происходят примерно раз в 500 тыс. лет;

* столкновения с малыми астероидами происходят чаще (каждые 300 лет), но последствия столкновений носят лишь локальный характер.

На основе орбит уже изученных астероидов астрономы составили список потенциально опасных известных астероидов, орбиты которых пройдут на критическом расстоянии от Земли до конца XXI века. Этот список насчитывает около 300 объектов, орбиты которых пересекают орбиту Земли. Самое близкое прохождение на расстоянии в 880 тыс. км ожидается у астероида Хатор в октябре 2086 года.

В целом же астрономы считают, что число опасных и пока необнаруженных опасных астероидов примерно 2500. Именно эти таинственные странники и будут составлять главную опасность будущему Земли.

Кометы. Их типичные характеристики таковы: массы 1014-1019 г, размеры ядра 10 км, размеры хвоста 10 млн км, скорости движения 10 км/с, кинетическая энергия 1023-1028 эрг.

Кометы отличаются от астероидов своим строением: если астероиды представляют собой твердые глыбы, то ядра комет - это скопление "грязного льда". Кроме того, кометы в отличие от астероидов имеют протяженные газовые хвосты. Но прохождение Земли через такие хвосты не представляет какой-либо опасности из-за их низкой плотности. Например, при прохождении Земли через хвост кометы Галлея 18 мая 1910 года не было замечено каких-либо аномалий на поверхности Земли[5].

Но проблема опасности столкновения с ядром кометы стала очень актуальной после 1994 года в связи с падением различных частей кометы Шумейкеров-Леви на поверхность Юпитера. Возникшие при этом взрывы были оценены в величину, эквивалентную взрыву 60 000 Мт тротила, что равно взрыву нескольких миллионов атомных бомб, сброшенных на Хиросиму.

Астрономы подсчитали, что кометы проходят между Землей и Луной каждые 100 лет, а некоторые падают на Землю примерно раз в каждые 100 тыс. лет. Было также оценено, что в течение средней жизни человека вероятность столкновения с кометой равна 1/10 000.

Исследования астрономов показали, что за последние 2400 лет было 20 близких (меньших 15 млн км) прохождений 18 комет. Самое близкое прохождение на расстоянии в 2,3 млн км было у кометы Лекселя в июле 1770 года. Подсчитано, что в ближайшие 30 лет близкие прохождения будут у трех изученных комет. Но, к счастью, минимальные расстояния будут не столь опасными - более 9 млн км.

Следует иметь в виду, что пока речь шла об известных кометах. Выше было сказано об открытии трансплутоновых комет. Эти кометы могут залетать во внутренние области Солнечной системы, в частности, пересекаясь с орбитой Земли. Не исключено, что эти еще не открытые кометы и могут нести в себе опасность.

3.3. Астрофизическая опасность

Но, увы, не только столкновения несут в себе глобальные последствия для Земли. Отметим кратко лишь две возможные опасности, исходящие из дальнего космоса.

Будущая жизнь Солнца. Астрофизики могут рассчитать все этапы жизни звезды. Согласно расчетам, например, через 7,9 млрд лет Солнце превратится в красный сверхгигант, увеличив свой размер в 170 раз, поглотив при этом Меркурий. Нетрудно подсчитать, что на нашем небе Солнце будет выглядеть как красный шар, занимающий половину небесной сферы. В результате температура на Земле повысится, начнется интенсивное испарение океанов, из-за чего увеличится непрозрачность атмосферы, что вызовет так называемый парниковый эффект: Земля станет очень горячей.

Дальнейшее раздувание Солнца приведет к тому, что и Земля уже будет вращаться фактически внутри Солнца. Согласно этому сценарию, Земле уготовлена не очень приятная участь. Трение Земли и частиц газа Солнца будет уменьшать орбитальную скорость Земли, в результате Земля по спирали будет падать к центральным областям Солнца. Это приведет к тому, что Солнце нагреет Землю до чрезвычайно высоких температур, превратив ее в раскаленные скалы без всяких признаков наличия воды в океанах и, естественно, жизни.

Вспышки сверхновых. Другие звезды, которые имеют большую массу, чем Солнце, живут несколько иначе. На определенной стадии они могут взорваться, выделив при этом чудовищную энергию (астрономы называют такой процесс вспышкой сверхновой). Было выяснено, что имеются две причины таких вспышек.

На последней стадии жизни у звезды прекращаются ядерные реакции и она превращается в плотный объект - белый карлик (БК). Но если около БК имеется соседняя звезда, то вещество этой звезды может перетекать на БК. При этом на поверхности БК опять начинаются термоядерные реакции, выделяющие громадную энергию. Такой механизм вспышки работает для сверхновых типа SNI.

Другой тип сверхновых (SNII) объясняется эволюцией звезды массы более десяти масс Солнца. Термоядерные реакции сопровождаются превращением водорода в более тяжелые элементы. На каждой стадии выделяется энергия, нагревающая звезду. Tеория предсказывает, что при достижении образования железа последовательность реакций прекращается. Внутренняя часть железного ядра в течение секунды сжимается. Когда внутренняя часть звезды достигает ядерных плотностей, она отскакивает от центра, сталкиваясь с еще коллапсирующей внешней частью ядра. Возникающая ударная волна разносит всю звезду. Выделяемая энергия за 1 с будет чудовищной, равной энергии, излученной 100 солнцами за 109 лет.

Некоторые астрономы (И.С. Шкловский и Ф.Н. Краcовский) полагали, что такой взрыв мог произойти у близкой к Солнцу звезды 65 млн лет назад. Согласно сценарию, описанному этими авторами, выброшенное вещество после взрыва через несколько тысяч лет достигло Земли. Оно содержало релятивистские частицы, которые при попадании в атмосферу Земли вызвали интенсивный поток вторичных космических частиц, которые при достижении поверхности Земли повысили радиоактивность в 100 раз. Это неизбежно привело бы к мутациям в живых организмах с последующим их исчезновением.

Вероятность глобального влияния на Землю такого взрыва в будущем зависит, во-первых, от того, насколько часто происходят вспышки сверхновых в нашей Галактике, и, во-вторых, от критического расстояния r до звезды. Основываясь на наблюдаемых данных, известный специалист по статистике звезд С. Ван дер Берг пришел к выводу, что за каждый 1 млрд лет в объеме нашей Галактики в 1 кпк3 происходят в среднем 150 000 вспышек сверхновых. Если взять за критическое расстояние до звезды в r = 10 световых лет, то легко получить, что, для того чтобы в объеме такого радиуса произошла одна вспышка, необходимо время в 60 млрд лет. Эта величина существенно больше возраста Земли. Таким образом, маловероятно, что биотические кризисы можно объяснить явлением вспышки. В будущем такая вспышка также не очень вероятна. Однако все же следует отметить, что приведенные рассуждения основаны на средних оценках. Для примера отметим, что звезда Бетельгейзе в созвездии Ориона может вспыхнуть через несколько тысяч лет. Другая звезда - h Car вспыхнет через 10 000 лет. К счастью, расстояния до них достаточно велики - 650 и 10 000 световых лет.

Гамма-вспышки. Около 30 лет назад астрономы с помощью спутниковых наблюдений установили, что в различных точках небесной сферы наблюдаются объекты, которые вспыхивают в гамма-диапазоне с длительностью вспышек от долей секунды до нескольких минут. Последние оценки расстояний до этих объектов свидетельствуют, что они располагаются далеко за пределами нашей Галактики. Это означает, что энергия излучения в гамма-диапазоне у этих объектов фантастически велика - порядка 1050-1052 эрг.

Наиболее распространенная гипотеза о механизме вспышек, предложенная С.И. Блинниковым и др., - это гипотеза о слиянии двух нейтронных звезд - последней стадии жизни двойной системы, состоявшей из двух массивных звезд. Расчеты астрофизиков показали, что при таком слиянии выделяется энергия, эквивалентная энергии излучения миллиарда галактик, подобных нашей.

Но такие пары нейтронных звезд могут существовать не только на космологическом расстоянии, но и внутри нашей Галактики. Астрофизики подсчитали, что в нашей Галактике одно слияние пары происходит каждые 2-3 млн лет. Сейчас надежно установлено наличие трех таких пар. Если одна из них (PSR B2127+11C) начнет сливаться, то последствия этого для Земли будут очень серьезны, правда, более чем через 220 млн лет. Прежде всего сильное гамма-излучение уничтожит озоновый слой атмосферы Земли. Но главное в том, что при вспышке образуются энергичные космические частицы, которые, достигнув атмосферы Земли, будут создавать вторичные космические частицы. Эти частицы дойдут до поверхности Земли и даже глубже, превратив ее в радиоактивное кладбище.

Все приведенные выше факты ставят главный вопрос.

3.4. Что делать?

Ответ на этот вопрос применительно к малым телам Солнечной системы должен содержать два аспекта:

астрономический - необходимо заблаговременно открыть неизвестные и потенциально опасные объекты на как можно большем расстоянии от Земли, вычислить их точные орбиты и предсказать момент возможной опасности;

технический - необходимо принять решения и их реализовать, чтобы избежать возможного столкновения.

Для решения астрономической части сейчас создается сеть телескопов с диаметром около 2 м. Это позволит обнаружить примерно 90% опасных астероидов на расстоянии до 200 млн км и 35% опасных комет на расстоянии до 500 млн км. Поскольку скорости движения объектов порядка 10 км/с, то это позволит иметь резерв времени в несколько месяцев для принятия решения.

Точность теоретических расчетов орбит и моментов столкновений прежде всего определяется количеством установленных положений на небе опасных объектов. Эту задачу можно решить с помощью указанной выше сети телескопов. Далее при расчете орбит необходимо тщательно учесть возмущения в движении небесных тел, вызванные воздействием всех планет Солнечной системы. Эта проблема уже решена астрономами с высокой точностью.