Смекни!
smekni.com

Моделі мультиграничної сегментації зображень (стр. 5 из 6)

Для опису форми елементів покриття використовувався набір таких ознак: площа, заповнена площа, опукла площа, периметр, діаметр кола рівної площі, діаметр окружності рівного периметра, максимальний діаметр Ферре, довжини великої та малої піввісей еліпсу, координати центру тяжіння, середня арифметична відстань від контурних точок до центру тяжіння, розкид відстані від контурних точок до центра тяжіння; максимальна й мінімальна відстань до центру тяжіння; максимальний та мінімальний моменти інерції відносно головних центральних вісей інерції контуру; число Ейлера. На основі цих ознак вираховувалися такі числові характеристики елементів покриття: сферична проекція, відношення Ваделла (опуклості форми), відношення Пентланда (сферичність проекції), коефіцієнт складчастості, ексцентриситет, фактор компактності Гортона, відношення опуклості, параметри кривизни.

Запропонований метод сегментації можна надати у такий спосіб. Після медіанної фільтрації, яка забезпечує зменшення кількості потенційних класів еквівалентності (або толерантності), на основі мультиграничних моделей виконується реквантування цифрового зображення з урахуванням детектування локальних максимумів гістограми. Далі після «розфарбування» отриманих класів (індексації зв’язних областей) застосування операції бінарної морфології дозволяє виключити з аналізу дрібні деталі, а в кожному класі, який залишили, ліквідувати незначущі частини з метою переходу (якщо можливо) до однозв’язних областей. Порогова фільтрація в просторі ознак забезпечує відсікання ряду елементів фактор-множин, які не становлять інтересу з погляду застосувань. На цьому етапі розбиття (покриття) поля зору вважається підготовленим для трансформацій. Після виділення внутрішніх частин і меж на базі просторового контексту (додавань, дотику, перетинання і т. ін.), виконуючи теоретико-множинні операції, отримуємо придатний для однозначної інтерпретації результат.

Рис. 1 ілюструє описану схему сегментації. На рис. 1, а) наведено початкове зображення; на рис. 1, б) показано реквантоване зображення з розбиттям

, де
,
,
,
,
. На рис. 1, в) зображено 127 класів однорідності (отримане розбиття є правильним і порядковано зв’язним); рис. 1, г) демонструє результати трансформацій (отримано 10 класів еквівалентності). Рис. 1, д) показує зв’язок кінцевого розбиття з початковим зображенням, на рис. 1, е) наведено результати апроксимації райдужної оболонки й зіниці. Залежності на рис 1, ж), з) ілюструють значення ознак «округлості», «складчастості» та опуклості.

Для дослідження залежності точності багатозначного реквантування від кількості порогів використовувалось розбиття оператором початкового зображення, що приймалося як еталонне. Для визначення міри близькості між еталонним розбиттям («ground truth» парадигма)

і розбиттями
, які отримуємо внаслідок автоматичного реквантування, використовувалася метрика

,

де

– симетрична різниця множин.

Під час проведення дисертаційних досліджень отримані дані, що характеризують залежності точності визначення центру райдужної оболонки та зіниці, їхніх діаметрів при різних параметрах сегментації.

Результати експериментальних досліджень дозволяють стверджувати, що запропонована в роботі двоетапна схема сегментації, коли на першому етапі здійснюється мультигранична сегментація, а на другому – шляхом трансформацій окремих класів розбиттів (покриттів) або їхніх сукупностей створюються достатні умови для предметно-орієнтованої інтерпретації зображень є ефективною.

Реалізація теоретичних результатів здійснена при розробці спеціалізованого програмного забезпечення неінвазивної діагностики патології ока на основі властивостей п’єзооптичного ефекту і при створенні дослідницьких засобів для розробки програмного забезпечення пошуку й розпізнавання візуальної інформації у великих колекціях зображень.

У додатку наведено акти впровадження теоретичних і практичних результатів дисертаційних досліджень.


Висновки

У дисертації наведено узагальнене та отримано нове вирішення наукового завдання усунення семантичного конфлікту між обробкою та тематичною інтерпретацією візуальної інформації у вигляді моделей мультиграничної сегментації зображень і перетворень класів еквівалентності або толерантності на основі даних, які визначені специфікою предметної області. Під час проведення дисертаційних досліджень отримано такі основні результати:

1. Встановлено, що в концептуальному і прикладному аспектах для інтерпретації візуальної інформації досить універсальним і адекватним є підхід, що полягає в отриманні часткової сегментації зображень на базі мультиграничних моделей і наступних перетворень розбиттів і/або покриттів поля зору, що продукуються, з урахуванням апріорних даних.

2. Запропоновано обґрунтовані й досліджені моделі, в основу яких покладено зв’язок розбиттів і покриттів поля зору, індукованих розбиттями й покриттями діапазону зміни яскравостей (множини ознак). Властивості розбиттів і покриттів забезпечують отримання розбиттів, аналіз яких створює передумови для пошуку розумного компромісу між надмірною і недостатньою сегментацією.

3. Встановлено, що для підвищення ефективності інтерпретації візуальної інформації доцільно проводити морфологічну обробку окремих класів еквівалентності або толерантності, а розбиття або покриття повинні перетворюватися з урахуванням їхніх просторових властивостей та ознакової інформації, пов’язаної зі специфікою предметно-орієнтованої області.

4. На основі узагальнених вимог до трансформацій результатів часткової сегментації конкретизовано операції з окремими областями і з їхніми сімействами. Виявлено випадки одержання однозначних результатів і ситуації, що вимагають залучення додаткової інформації: або ознак форми об’єктів чи областей, що визначають носій їхніх зображень, або характеристик просторової конфігурації необхідної фактор-множини.

5. Удосконалено методи мультиграничної сегментації зображень. Шляхом експериментальних досліджень виявлено особливості двоетапної процедури сегментації на основі мультиграничних моделей і перетворень розбиттів і покриттів у плані застосування операцій, що забезпечують істотне зменшення кількості аналізованих областей за рахунок злиття або вилучення фрагментів несуттєвих із погляду застосувань.

6. Теоретичні й практичні результати дисертації реалізовано у вигляді програмних засобів, що забезпечують як розв’язання конкретних завдань обробки та інтерпретації візуальної інформації, так і їхнє використання в задачах імітаційного моделювання для вибору характеристик алгоритмів сегментації на базі мультиграничних моделей.

7. Результати теоретико-експериментальних досліджень реалізовано та впроваджено у вигляді прикладних та дослідницьких програмних комплексів, що використовуються при розробці систем медичної діагностики.


список опублікованих праць за темою дисертації

1. Чупиков А.Н. Свойства толерантностей при сегментации изображений // Прикладная радиоэлектроника. – 2006. – № 3 (5). – С. 408–411.

2. Машталир В.П., Чупиков А.Н. Модели покрытий в задачах сегментации изображений реквантованием // Радиоэлектроника и информатика. – 2006. – № 3. – С. 58–65.

3. Егорова Е.А., Чупиков А.Н., Щербинин К.А. Интеллектуальная обработка результатов сегментации синтезированных изображений // Прикладная радиоэлектроника. – 2006. – Т. 5, № 3. – С. 408–411.

4. Chupikov A., Kinoshenko D., Mashtalir V., Shcherbinin K. Image retrieval with segmentation-based query // Adaptive multimedia retrieval: user, context, and feedback / S. Marchand-Maillet et al. (Eds.). 4-th International Workshop Adaptive Multimedia Retrieval. Geneva, Switzerland, July 27–28, 2006. – Berlin Heidelberg: Springer-Verlag. – Lecture Notes in Computer Science. – Vol. 4398. – 2007. – Р. 208–222.

5. Chupikov A., Mashtalir S., Yegorova E. Morpholohical normalization of image binary cuts // Computational Imaging and Vision / M.A. Viergever, ed. International Conference on Computer Vision and Graphics. Warsaw. Poland, September 22–24, 2004. – Dordrecht: Springer. –Vol. 32. – 2006. – P. 558–564.
6. Чупиков А.Н. Синтез методов сегментации в задачах идентификации // Материалы I международной научной конференции «Глобальные информационные системы. Проблемы и тенденции развития». Харьков, 3–6 октября 2006 г. – Харьков: ХНУРЭ, 2006. – С. 87–88.

7. Чупиков А.Н. Синтез и комбинирование методов сегментации изображений // Материалы Х международной научной конференции, посвященной памяти генерального конструктора ракетно-космических систем академика М.Ф. Решетнева. Красноярск, Россия, 8–10 ноября, 2006 г. – Красноярск: СибГАУ, 2006. – С. 327–328.