Смекни!
smekni.com

Электрохимические сенсоры на основе ионофоров: современное состояние, тенденции, перспективы (стр. 3 из 4)

В течение некоторого времени представления о существенных трансмембранных потоках ионов оставались гипотезой, призванной объяснить закономерности, выявленные в [75]. Позднее методом сканирующей электронной микроскопии удалось прямо зарегистрировать поток ионов сквозь мембрану [78].

Поддержание низкой концентрации (порядка 10–10 M) основных ионов во внутреннем растворе, постоянной во времени и воспроизводимой от электрода к электроду, требует применения соответствующего буферного раствора. Поэтому первоначально успех в расширении диапазона функционирования относился к электродам, селективным к тем ионам, по отношению к которым можно создать буферные растворы. В частности, это ионы свинца, кальция, серебра, активность которых можно фиксировать в широком интервале, применяя ЭДТА, ЭГТА или иные подобные агенты в сочетании с буферными растворами pH [75, 79—82].

В случае электродов, обратимых к ионам, активность которых нельзя задать буферными растворами (ионы калия, натрия, различных анионов) для расширения возможностей функционирования было предложено вносить в состав внутреннего заполнения электродов ионообменные смолы [83, 84]. Необходимый состав внутреннего раствора поддерживается за счет ионного обмена со смолой, обменная емкость которой занята соответствующими ионами в нужной пропорции.

Итак, расширение диапазона функционирования ионоселективных электродов в сторону сильно разбавленных растворов требует исключения трансмембран-К. Н. Михельсон 34ного потока ионов из внутреннего раствора во внешний. Адекватная компенсация трансмембранного переноса ионов из внутреннего раствора во внешний возможна, строго говоря, только при каком-то одном составе внешнего раствора. При дальнейшем разбавлении чрезмерный поток ионов сквозь мембрану во внутренний раствор электрода приводит к обеднению примембранного слоя внешнего раствора по измеряемым ионам, что вызывает супернернстовский отклик электрода. Поэтому на самом деле вместо идеальной нернстовской функции в широком интервале концентраций ионов получается кривая с двумя линейными участками, соединенными областью супернернстовской функции. Задача, таким образом, состоит в том, чтобы минимизировать эту нелинейную область [81] либо, наоборот, воспользоваться возможностями, которые предоставляет область супернернстовской функции. Фактически область супернернстовской функции отвечает условиям, при которых электрод «титрует» раствор: определяемые ионы практически полностью поглощаются мембраной и в конечном счете — внутренним раствором. Это позволяет проводить измерения не только ионизованной фракции (что характерно для ионоселективных электродов), но также полного брутто-содержания соответствующего компонента [85]. С другой стороны, наличие резкого скачка потенциала в узком интервале концентрации позволяет создавать сенсоры, сигнализирующие о преодолении некоего порогового значения, например предельно допустимой концентрации ионов, что очень важно для экологического мониторинга, а также для аналитического контроля в производственных помещениях [86].

Новые представления о природе нижнего предела функционирования ионоселективных электродов, казалось бы, не соответствуют известным данным о работе твердоконтактных электродов. Действительно, если нет внутреннего раствора, то нет и резервуара ионов, поток которых сквозь мембрану изменяет концентрацию в примембранном слое внешнего раствора. Вместе с тем нижний предел определения для твердоконтактных электродов, как правило, всего на 0, 3—0, 5 логарифмических единиц лучше, чем для аналогичных электродов с внутренним раствором. Дело, однако, в том, что в твердоконтактных электродах с гидрофильным токоотводом (где мембрана сформирована на металлическом токоотводе) между мембраной и токоотводом на самом деле существует тонкий слой раствора. Этот слой формируется в ходе кондиционирования электрода в растворе перед измерением [87]. В случае же электродов с переходным слоем на основе электропроводящего полимера существует поток ионов допанта из электрополимера сквозь мембрану в раствор [88, 89].

Поскольку нижний предел обнаружения порядка 10–5—10–6 M, характерный для традиционных методик применения ионоселективных электродов, обусловлен трансмембранной диффузией электролита, достаточно общим способом оптимизации измерений может быть потенциометрия с вращающимся дисковым электродом [90]. Однако этот способ сравнительно сложен в аппаратурном оформлении.

Более непосредственный способ воздействия на трансмембранные потоки (соответственно для улучшения нижнего предела функционирования ионоселективных электродов) состоит в пропускании через мембрану небольшого электрического тока. В результате поток ионов, обусловленный градиентом приложенного напряжения, компенсирует поток, который был бы в отсутствие тока. Пионерские исследования в этом направлении проведены в работе [91], дальнейший прогресс достигнут в работах [88, 89, 92—94].

К настоящему времени достаточно хорошо отработаны как процедуры изготовления ионоселективных электродов с низким пределом обнаружения, в том числе твердоконтактных [95], так и способы быстрой оценки максимально возможного диапазона функционирования и селективности электродов с мембраной заданного состава [96].

Новые концепции, относящиеся к электродам на основе ионофоров, в том числе принципы резкого улучшения нижнего предела функционирования ионоселективных электродов, особенности создания электродов для определения полиионов, например гепарина, рассмотрены в работе [97]. Новым подходом к обеспечению работоспособности электродов на основе ионофоров является гальваностатическая поляризация. Это не просто прием, который используется для формирования конфигурации трансмембранных потоков ионов [88, 89, 91—94]. Показано, что градуировка ионоселективных электродов и измерения в режиме последовательных гальваностатических импульсов, т.е. по сути дела в хронопотенциометрическом режиме, открывают новые возможности как в анализе полиионов [98—100], так в определении «обычных» ионов, таких как Na+ [101] и Ca2+ [102]. В отличие от измерений в режиме нулевого тока (потенциометрия), хронопотенциометрия позволяет заметно улучшить воспроизводимость результатов измерений в разбавленных растворах, а также увеличить чувствительность сенсора к концентрации ионов — сверх соотношения, заданного уравнением Нернста.

Заключение Заметные успехи в развитии аналитических возможностей электродов на основе ионофоров связаны, с одной стороны, с выраженной тенденцией к пересмотру устаревших представлений о принципах их действия и формировании электродного потенциала, а с другой — с развитием фундаментальных исследований в области ионометрии. В частности, детально проанализированы условия, при которых возникает не-нернстовский отклик электродов при нулевом токе [103, 104]. С помощью вольтамперометрических [105, 106] и импедансных методов [107—109] получены новые данные о переносе ионов через границу раздела мембрана/раствор, свидетельствующие о быстром установлении электрохимического равновесия (диффузионный контроль). Определены составы и константы устойчивости соеди-Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева), 2008, т. LII, № 2 35 нений ионов и ионофоров (нейтральных и заряженных) в реальных мембранах [104, 107, 110—113].

Обобщенное теоретическое описание электрического потенциала ионоселективных мембран на основе ионофоров в стационарном состоянии дано в работе [114]. Дальнейшее развитие теории ионоселективных электродов требует моделирования их поведения в реальных пространстве и времени, т.е. без ограничений в отношении равновесия или даже стационарного состояния. Эта сложная задача, решение которой дает теоретическую базу для выхода ионометрии в частности за пределы чисто потенциометрического метода. Значительные успехи в этом направлении достигнуты путем моделирования с применением уравнений Нернста— Планка и Пуассона с учетом нарушения электронейтральности в двойных электрических слоях в области границы мембрана/раствор [115—118]. Дана и упрощенная теоретическая трактовка установления мембранного потенциала без учета нескомпенсированного заряда в двойном электрическом слое [119].

Можно ожидать, что развитие ионометрии, использующей электроды на основе ионофоров, будет продолжаться как по экстенсивному, так и по интенсивному пути. Вероятно, в ближайшем будущем смогут быть решены задачи создания достаточно селективных электродов для прямого определения сульфата и фосфатов, будут разработаны твердоконтактные ионоселективные электроды с хорошей долговременной стабильностью. Прорывных результатов можно ожидать от применения электродов в условиях гальваностатической поляризации. Создание миниатюрных ионоселективных электродов, совместимых с современными технологиями, а также соответствующих электродов сравнения, откроет путь для развития интегрированных твердофазных сенсорных систем для химического анализа.

Список литературы

1. Bakker E., Bьhlmann P., Pretsch E. Chem. Rev., 1997, v. 97, № 8, p. 3083—3132.

2. Bьhlmann P., Pretsch E., Bakker E. Ibid., 1998, v. 98, № 4, p. 1593—1687.

3. Bakker E., Telting-Diaz M. Anal. Chem., 2002, v. 72, № 12, p. 2781—2800.

4. Bakker E. Ibid., 2004, v. 74, № 12, p. 3285—3298.

5. Bakker E., Qin Yu. Ibid., 2006, v. 78, № 12, p. 3965—3983.

6. Будников Г.К., Широкова В.И. Ж. аналит. химии, 2006, т. 61, № 10, с. 1055—1066.

7. Власов Ю.Г., Легин А.В., Рудницкая А.М. Успехи химии, 2006, т. 75, № 2, с. 141—150.

8. Хандар А., Шабанов А.Л., Меджиди Р., Асадов Г.М., Мамедов Ч.И. Ж. аналит. химии, 2003, т. 58, № 2, с. 207—210. 9. Немилова М.Ю., Шведене Н.В., Ковалев В.В., Шокова Э.А.

Там же, 2003, т. 58, № 4, с. 425—429.

10. Benko J.S., Nienaber H.A., McGimpsey W.G. Anal. Chem., 2003, v. 75, № 1, p. 152—156.

11. Petrukhin O.M., Frakiisky Ye.V., Kharitonov A.B., Urusov Yu.I., Baulin V.Ye. Anal. сhim. аcta, 1999, v. 385, p. 125—130. 12. Петрухин О.М., Кураченкова С.Н., Сонина Е.А., Шипуло Е.В., Баулин В.Е. Ж. аналит. химии, 2002, т. 57, № 3, с. 288. 13. Шабанов А.Л., Хандар А., Гасанова М.М., Гасанова У.А., Асадов Г.М. Там же, 2005, т. 60, № 4, с. 417—419. 14. Рахманько Е.М., Егоров В.В., Таразевич М.Я., Рубинова А.Д. Там же, 2003, т. 58, № 7, с. 773—779.