Смекни!
smekni.com

Охранная система с дистанционным управлением (стр. 2 из 13)

1.4 Определение требований к охранной системе

Требования, предъявляемые к охранной системе следующие:

Большое количество подключаемых датчиков;

Универсальность и широкий набор функций;

Высокая надёжность устройства;

Удобный пользовательский интерфейс;

Низкая себестоимость устройства.

Исходя из требований, указанных выше, необходимо построить ОС на базе микроконтроллера с использованием современной элементной базы. Для обеспечения эргономичного пользовательского интерфейса необходимо иметь возможность подключения данной ОС к персональному компьютеру. Кроме того, должна быть возможность использования приведенных выше схем в качестве дополнения к данному устройству, что позволит сделать его более универсальным. Кроме того, для удобства в эксплуатации, система должна иметь возможность управления с пульта дистанционного управления (ПДУ).


2. Построение структурной схемы

Охранная система с дистанционным управлением построена на микроконтроллере, который осуществляет опрос датчиков, вывод на экран текущего состояния системы и температуры охраняемого объекта, управление 4-мя независимыми каналами освещения, а также обеспечивает обмен данными с персональным компьютером. Подключение к ПК осуществляется через интерфейс RS-232 на скорости 9600 кбит/с. Структурная схема ОС приведена на рисунке 2.1.

Рисунок 2.1 – структурная схема ОС с дистанционным управлением.

ОС контролирует состояние 9 входов, к которым могут быть подключены датчики различных типов. Если на одном из входов появляется лог. “1” и разрешено срабатывание данного датчика, то ОС переходит в режим тревоги, выдавая соответствующую команду на ПК. Кроме того, к микроконтроллеру подключен цифровой термометр по интерфейсу I2C. Кварцевый резонатор задаёт тактовую частоту работы микроконтроллера. Блок питания выдаёт напряжение питания устройства.

Ниже приведены электрические параметры ОС:

- Напряжение питания5 В

- Ток потребления304 мА

- Тактовая частота4 МГц

- Диапазон рабочих температур-10…+70 С

3. Выбор и обоснование элементной базы

Прежде всего, нужно выбрать микроконтроллер, на базе которого построена вся работа ОС.

3.1 Особенности отечественных однокристальных микроконтроллеров

Среди однокристальных микроконтроллеров (ОМК) отечественного производства наиболее перспективными являются БИС серии К1816, которые имеют два базовых элемента: К1816ВЕ48 (ВЕ48) и К1816ВЕ51 (ВЕ51).

Семейство ВЕ48 состоит из БИС ВЕ35, ВЕ39, ВЕ48 и ВЕ49. Каждая БИС представляет 8-разрядный ОМК, содержащий центральный процессор, оперативное запоминающее устройство (ОЗУ) данных, ПЗУ программ (не у всех БИС), многоканальный интерфейс ввода / вывода, восьмиразрядный таймер счетчик, векторную систему прерываний с приоритетом, тактовый генератор, устройство синхронизации. Микросхемы семейства ВЕ48 имеют идентичную структуру и отличаются лишь организацией внутренней памяти. Данные об ОМК семейства ВЕ48 приведены в таблице 3.1.

В ОМК ВЕ48 пользователь имеет возможность самостоятельно производить запись информации в память программ с последующим стиранием ультрафиолетом, в отличие от ВЕ49, где операции записи осуществляются с помощью отдельного шаблона в процессе изготовления БИС.

В каждом ОМК предусмотрена возможность расширения памяти программ до 4 Кбайт, памяти данных до 384 байт и увеличения числа линий ввода / вывода за счет подключения внешних БИС.


Таблица 3.1.1 – БИС семейства К1816Вехх

Тип БИС Память программ, Кбайт ОЗУ, Байт Тактовая частота, МГц
ВЕ35 - 64 6
ВЕ39 - 128 11
ВЕ48 1 64 6
ВЕ49 1 128 11

Семейство ВЕ51 представляет собой дальнейшее расширение семейства ВЕ48 и состоит из БИС ВЕ31 и ВЕ51. Их отличие в том, что ВЕ31 не имеет внутренней памяти программ, а ВЕ51 имеет (4 Кбайт).

В состав ОМК ВЕ51 входят центральный 8 – разрядный процессор, ПЗУ программ (4 Кбайт), ОЗУ данных (128 байт), 32 линии прямого ввода / вывода, четыре тестируемых входа, канал последовательного ввода / вывода, два 16 – разрядных таймера / счетчика и двухуровневая система прерывания с пятью источниками запросов. Эти средства образуют резидентную часть ОМК, размещенную непосредственно в кристалле. Предусмотрена возможность расширения памяти программ до 64 Кбайт и памяти данных до 64 Кбайт, что реализуется подключением дополнительных БИС ПЗУ и ОЗУ.

БИС семейства К1816ВЕ51 изготавливаются по N-МОП-технологии, при этом они имеют значительный ток потребления, который составляет 150 мА. Этого недостатка лишены БИС семейства К1830ВЕ51. Эти БИС изготавливаются по КМОП-технологии и имеют малый ток потребления (18 мА при напряжении питания +5 В). Во всем остальном БИС семейства К1830ВЕ51 схожи с БИС семейства К1816ВЕ51.

3.2 Особенности микроконтроллеров фирмы Atmel

AVR-архитектура, на основе которой построены микроконтроллеры семейства AT90S, объединяет мощный гарвардский RISC-процессор с раздельным доступом к памяти программ и данных, 32 регистра общего назначения, каждый из которых может работать как регистр-аккумулятор, и развитую систему команд фиксированной 16-бит длины. Большинство команд выполняются за один машинный такт с одновременным исполнением текущей и выборкой следующей команды, что обеспечивает производительность до 1 MIPS на каждый МГц тактовой частоты.

32 регистра общего назначения образуют регистровый файл быстрого доступа, где каждый регистр напрямую связан с АЛУ. За один такт из регистрового файла выбираются два операнда, выполняется операция, и результат возвращается в регистровый файл. АЛУ поддерживает арифметические и логические операции с регистрами, между регистром и константой или непосредственно с регистром.

Регистровый файл также доступен как часть памяти данных. 6 из 32-х регистров могут использоваться как три 16-разрядных регистра-указателя для косвенной адресации. Старшие микроконтроллеры семейства AVR имеют в составе АЛУ аппаратный умножитель.

Базовый набор команд AVR содержит 120 инструкций. Инструкции битовых операций включают инструкции установки, очистки и тестирования битов.

Все микроконтроллеры AVR имеют встроенную FLASH ROM с возможностью внутрисхемного программирования через последовательный 4-проводной интерфейс.

Периферия МК AVR включает: таймеры-счётчики, широтно-импульсные модуляторы, поддержку внешних прерываний, аналоговые компараторы, 10-разрядный 8-канальный АЦП, параллельные порты (от 3 до 48 линий ввода и вывода), интерфейсы UART и SPI, сторожевой таймер и устройство сброса по включению питания. Все эти качества превращают AVR-микроконтроллеры в мощный инструмент для построения современных, высокопроизводительных и экономичных контроллеров различного назначения.

В рамках единой базовой архитектуры AVR-микроконтроллеры подразделяются на три подсемейства:

Classic AVR — основная линия микроконтроллеров с производительностью отдельных модификаций до 16 MIPS, FLASH ROM программ 2–8 Кбайт, ЕEPROM данных 64–512 байт, SRAM 128–512 байт;

mega AVR с производительностью 4–6 MIPS для сложных приложений, требующих большого обьёма памяти, FLASH ROM программ 64–128 Кбайт, ЕEPROM данных 64–512 байт, SRAM 2–4 Кбайт, SRAM 4 Кбайт, встроенный 10-разрядный 8-канальный АЦП, аппаратный умножитель 8ґ8;

tiny AVR — низкостоимостные микроконтроллеры в 8-выводном исполнении имеют встроенную схему контроля напряжения питания, что позволяет обойтись без внешних супервизорных микросхем.

AVR-микроконтроллеры поддерживают спящий режим и режим микропотребления. В спящем режиме останавливается центральное процессорное ядро, в то время как регистры, таймеры-счётчики, сторожевой таймер и система прерываний продолжают функционировать. В режиме микропотребления сохраняется содержимое всех регистров, останавливается тактовый генератор, запрещаются все функции микроконтроллера, пока не поступит сигнал внешнего прерывания или аппаратного сброса. В зависимости от модели, AVR-микроконтроллеры работают в диапазоне напряжений 2,7–6 В либо 4–6 В (исключение составляет Attiny12V с напряжением питания 1,2 В).

Средства отладки. ATMEL предлагает программную среду AVR-studio для отладки программ в режиме симуляции на программном отладчике, а также для работы непосредственно с внутрисхемным эмулятором. AVR-studio доступен с WEB-страницы ATMEL, содержит ассемблер и предназначен для работы с эмуляторами ICEPRO и MegaICE. Ряд компаний предлагают свои версии Си-компиляторов, ассемблеров, линковщиков и загрузчиков для работы с микроконтроллерами семейства AVR. Микроконтроллеры ATMEL широко применяются в России и, как следствие, программируются многими отечественными программаторами. Ряд российских фирм предлагает также различные аппаратные средств отладки AVR-микроконтроллеров

3.3 Особенности микроконтроллеров фирмы Microchip

Система команд базового семейства PIC165x содержит только 33 команды. Все команды (кроме команд перехода) выполняются за один машинный цикл (или четыре машинных такта) с перекрытием по времени выборок команд и их исполнения, что позволяет достичь производительности до 5 MIPS при тактовой частоте 20 МГц.

Микроконтроллеры PIC имеют симметричную систему команд, позволяющую выполнять операции с любым регистром, используя любой метод адресации.

В настоящее время MICROCHIP выпускает четыре основных семейства 8-разрядных RISC-микроконтроллеров, совместимых снизу вверх по программному коду:

базовое семейство PIC15Cx с 12-разрядными командами, простые недорогие микроконтроллеры с минимальной периферией;