Смекни!
smekni.com

Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB (стр. 3 из 14)

Ротор асинхронного двигателя в зависимости от вида обмотки может быть выполнен фазным или короткозамкнутым. Роторы выполняются из листов электротехнической стали, собранных между двумя нажимными шайбами. Пазы ротора (обычно полузакрытой формы) идут вдоль оси машины и равномерно расположены на поверхности по всей окружности.

Наиболее проста конструкция короткозамкнутого ротора, в пазы которого укладываются круглые или прямоугольные стержни из меди или алюминия, неизолированные, замкнутые накоротко на обоих концах ротора при помощи медных или алюминиевых колец большого сечения. Такого рода обмотку принято называть «беличьей клеткой» (рисунок 2.3), она очень прочна, дешева и надежна в работе.


Рисунок 2.3 - Короткозамкнутая обмотка ротора асинхронного двигателя

При Рн ≤ 100кВт современные короткозамкнутые роторы часто выполняются в виде клетки, изготовляемой заливкой пазов ротора алюминием. Стержни и замыкающие кольца с вентиляционными лопатками представляют собой в этом случае одну цельную отливку.

Ротор асинхронной машины с фазными обмотками - фазный ротор - имеет в пазах трехфазную обмотку, аналогичную обмотке статора. Фазы обмотки соединены в звезду, а выводы обмотки присоединяются к медным контактным кольцам, укрепленным на валу машины и изолированным как друг от друга, так и от вала. На контактных кольцах установлены щётки, выводы от которых расположены в коробке выводов. К этим выводам подключают пусковые или регулировочные реостаты.

2.3 Асинхронные двигатели с улучшенными пусковыми свойствами

Значительное улучшение пусковых характеристик асинхронных двигателей с короткозамкнутым ротором достигается изменением конструкции ротора. В качестве таких конструкций широко используют роторы с двойной короткозамкнутой обмоткой и с глубокими пазами.


2.3.1 АД с глубокопазным ротором

В двигателях с глубокими пазами на роторе его короткозамкнутая обмотка выполняется в виде тонких высоких полос (рисунок 2.4). При такой конструкции обмотки происходит оттеснение тока к верхней части проводников вследствие того, что нижние части проводников сцеплены с большим числом магнитных линий потока рассеяния, чем верхние части.

Таким образом, ток, протекающий по проводникам, стремится сконцентрироваться преимущественно в верхней их части, что равносильно уменьшению поперечного сечения или увеличению активного сопротивления этих проводников.

а) б) в)

Рисунок 2.4 - Схема устройства ротора с глубокими пазами и явление вытеснения тока: а) магнитное поле; б) диаграмма распределения плотности тока; в) рабочая часть проводника

Это явление оттеснения тока в верхние части проводников особенно сильно сказывается в момент включения двигателя, когда частота тока в роторе равна частоте тока сети и, следовательно, при пуске в ход увеличивается активное сопротивление обмотки ротора, в результате чего возрастает пусковой момент. При увеличении скорости вращения ротора частота тока в его обмотке уменьшается, и ток более равномерно распределяется по сечению стержней и при нормальной скорости вращения неравномерность распределения тока по поперечному сечению стержней почти полностью исчезает.

Пусковой момент двигателей этого типа МП = (1,2 - 1,5)МН.

2.3.2 АД с двойной короткозамкнутой обмоткой ротора

Ротор этого типа имеет две короткозамкнутые обмотки, выполненные в виде беличьих клеток (рисунок 2.5).

Число пазов верхней А и нижней Б клеток может быть одинаково или различно.

Рисунок 2.5 - Схема устройства ротора с двойной короткозамкнутой обмоткой

Верхняя клетка А выполнена из стержней малого поперечного сечения, а нижняя Б - из стержней большого поперечного сечения. Поэтому активное сопротивление обмотки А оказывается значительно большим, чем активное сопротивление обмотки Б (rA > rБ).

Вследствие того что стержни внутренней обмотки Б глубоко погружены в тело ротора и окружены сталью, индуктивное сопротивление внутренней обмотки значительно больше, чем индуктивное сопротивление внешней обмотки (ХБ >>XA).

При пуске в ход ток в основном протекает по проводникам внешней обмотки А, имеющей меньшее индуктивное и большее активное сопротивление. Эта обмотка называется пусковой.

В рабочем режиме скольжение мало и, следовательно, частота тока в роторе также мала. Поэтому индуктивные сопротивления обмоток не имеют значения и токи в обмотках А и Б обратно пропорциональны активным сопротивлениям.

Таким образом, в рабочем режиме ток в основном протекает по проводникам внутренней обмотки Б, имеющей меньшее активное сопротивление. Эта обмотка называется рабочей.

При такой конструкции ротора увеличивается активное сопротивление его обмотки в момент пуска в ход двигателя, что увеличивает пусковой момент.

Таким образом, в двигателях с двойной короткозамкнутой обмоткой и с глубокими пазами пусковые моменты больше и пусковые токи меньше, чем у обычных короткозамкнутых двигателей.

Однако рабочие характеристики этих двигателей несколько хуже, чем обычных короткозамкнутых двигателей - несколько меньше cosj, КПД и максимальный момент, так как у этих двигателей больше потоки рассеяния, т.е. больше индуктивные сопротивления обмоток ротора, чем у двигателей нормальной конструкции.

2.4 Способы пуска АД с коротокамкнутым ротором

К асинхронным двигателям предъявляются требования по пусковым характеристикам, так как вопросы связанные с пуском в ход, имеют большое значение. При решении вопросов пусковых характеристик необходимо учитывать, с одной стороны, условия работы сети, к которой подключается асинхронный двигатель, и, с другой стороны, требования, которые предъявляются к приводу. Оценка пусковых свойств двигателя производится по пусковым характеристикам, к которым следует отнести начальный пусковой ток Iп, или его кратность Iп/Iн и начальный пусковой момент Мп или его кратность Мпн.

Способы пуска АД с короткозамкнутым ротором: прямой пуск, реакторный и автотрансформаторный.


2.4.1 Прямой пуск АД

В настоящее время в связи со значительным ростом мощностей энергетических систем пуск в ход короткозамкнутых асинхронных двигателей в преобладающем большинстве случаев осуществляется очень простым способом (рисунок 2.6), а именно непосредственным включением в сеть.

В первый момент пуска, когда скорость вращающегося магнитного поля ω1 относительно неподвижного ротора (ω = 0) имеет наибольшую величину, в обмотке ротора будет наводиться значительная ЭДС, величина которой во много раз превышает номинальное значение при вращающемся роторе. Например, если при номинальной нагрузке двигателя скольжение составляет sном = 0,05, а ЭДС в роторе E2ном, то в начальный момент пуска при стоянке ротора, когда s = 1, т. е. в начальный момент пуска ЭДС, наводимая в роторе, будет в 20 раз больше, чем при номинальной нагрузке.

Соответственно значительно возросшей ЭДС ротора ток, создаваемый ею в роторе при пуске, также будет большим, превышающим номинальный в несколько (до восьми) раз. То обстоятельство, что кратность пускового тока в роторе меньше кратности ЭДС, объясняется увеличением реактивного сопротивления ротора при увеличении частоты тока, которая в начальный момент пуска достигает частоты статора.

Пусковой ток в обмотке статора при этом будет весьма значительным, превышающим в несколько раз номинальный. Современные двигатели с короткозамкнутым ротором имеют кратность пускового тока, составляющую 4-7 от номинального.

Поскольку большинство двигателей и приводимых ими механизмов имеет относительно небольшую инерцию, скорость двигателей при пуске достаточно быстро увеличивается до значения, соответствующего моменту нагрузки. Период пуска продолжается обычно не более нескольких секунд, вследствие чего пусковые токи статора и ротора не представляют опасности для двигателя, так как нагрев обмоток не успевает достигнуть опасных температур. Значение пускового момента находится в пределах 0,8-1,5 от номинального.

Рисунок 2.6 - Схема прямого пуска асинхронного короткозамкнутого двигателя

2.4.2 Реакторный и автотрансформаторный пуск АД

Недостаток прямого пуска: понижение напряжения сети из-за большого пускового тока Iп, если мощность двигателя соизмерима с мощностью сети.

Для уменьшения Iп и уменьшения падения напряжения сети, к двигателю подводится пониженное напряжение с помощью реактора или автотрансформатора.

При реакторном пуске в качестве пускового сопротивления обычно используется индуктивное сопротивление (реактор), включаемое на время пуска двигателя последовательно с обмоткой его статора.

Пуск осуществляется в следующем порядке. На первой стадии пуска подключается индуктивное сопротивление, после чего двигатель начинает вращаться. Когда скорость вращения достигает определенного значения, индуктивное сопротивление выключается (шунтируется) и к двигателю подается полное напряжение.

Если обозначить уменьшения тока Iп коэффициентом КI, то, при реакторном пуске пусковой момент двигателя уменьшаются в K2I раз.

Для понижения напряжения, подводимого к двигателю при пуске, можно использовать также автотрансформатор. Этот способ, как и предыдущий, требует специального пускового аппарата - автотрансформатора, который удорожает установку. Если обозначить через КА коэффициент трансформации автотрансформатора, то, как показывает подробный анализ, который здесь не приводится, при пуске этим способом пусковой ток в сети и пусковой момент двигателя уменьшаются в K2A раз. В этом случае величина пускового момента при прочих равных условиях будет больше, чем при реакторном пуске, что, безусловно, является преимуществом способа пуска короткозамкнутых асинхронных двигателей с помощью автотрансформатора.