Смекни!
smekni.com

Роль систем счисления в истории компьютеров (стр. 3 из 3)

_
τ = 1 + √5
2

, которое является корнем следующего алгебраического уравнения:

x2 = x + 1

Будучи корнем указанного алгебраического уравнения, "золотая пропорция" обладает следующим математическим свойством:

τn = τn-1 + τn-2,

где n принимает значения из следующего множества: 0, +1, +2, +3 ...

Именно в этом обстоятельстве (иррациональное основание τ) кроется причина ряда "экзотических" свойств "системы Бергмана" (более подробно о ней можно узнать на Web-сайте "Музей Гармонии и Золотого Сечения", ( http://www.goldenmuseum.zibys.com/ ).

Существенно подчеркнуть, что "Тау-система" переворачивает наши традиционные представления о системах счисления, более того - традиционное соотношение между числами рациональными и иррациональными. В "Тау-системе" основанием, то есть началом счисления, является некоторое иррациональное отношение τ, с помощью которого, используя систему (2) можно представить все другие числа, включая натуральные, дробные и иррациональные.

Идеи Цекендорфа и Бергмана получили дальнейшее развитие в работах автора настоящей статьи. В книге "Введение в алгоритмическую теорию измерения" (1977 г.) представление Фибоначчи-Цекендорфа было обобщено с помощью понятия р-кода Фибоначчи, основанного на р-числах Фибоначчи, и разработана арифметика Фибоначчи для таких представлений.

Под р-кодом Фибоначчи понимается следующий способ представления натурального числа N:

N = anFp(n) + an-1Fp(n-1) + ... + aiFp(i) + ... + a1Fp (1), (3)

где ai = {0, 1} - двоичная цифра i-го разряда представления; n - разрядность представления; Fp(i) - р-число Фибоначчи, задаваемое с помощью следующей рекуррентной формулы:

Fp(i) = Fp(i-1) + Fp(i-p-1); (4)

Fp(1) = Fp(2) = ... = Fp(p+1) = 1, (5)

где р - целое неотрицательное число, принимающее значение из множества {0, 1, 2, 3 ...}.

Заметим, что понятие "р-кода Фибоначчи" включает в себя бесконечное число представлений, так как каждому р соответствует свое представление; при этом для случая р = 0 р-код Фибоначчи вырождается в классическое двоичное представление, а для случая р = 1 - в представление Фибоначчи-Цекендорфа. При р = x любое р-число Фибоначчи равно 1, а это означает, что р-код Фибоначчи сводится к так называемому "унитарному коду":

N = 1 + 1 + : + 1;

А это, в свою очередь, означает, что р-коды Фибоначчи как бы заполняют пробел между классической двоичной системой счисления и унитарным кодом, включая их в качестве частных крайних случаев.

В книге "Коды золотой пропорции" (1984 г.) с использованием так называемых обобщенных золотых пропорций была обобщена система счисления Бергмана. Такие способы представления чисел были названы кодами золотой пропорции.

Под кодами золотой пропорции понимаются следующие способы представления действительного числа А:

A= Σ aiτpi; (6)
i

где ai - двоичные цифры, 0 или 1; i = 0, +1, +2, +3 ...; τpi - вес i-й цифры в представлении; τp - "золотая р-пропорция", являющаяся действительным корнем следующего алгебраического уравнения:

τp+1p + 1,

где целое число р принимает значение из множества {0, 1, 2, 3 ...}.

Заметим, что при р = 0 уравнение золотой р-пропорции вырождается в тривиальное уравнение x = 2, и при этом tp = 2; при р = 1 оно вырождается в уравнение для классической золотой пропорции и корень τp совпадает с классической золотой пропорцией.

Будучи корнем указанного алгебраического уравнения, "золотая р-пропорция" обладает следующим математическим свойством:

τpipn-1 + τpp-n-1 = τp × τpn-1

, где n принимает значения из следующего множества: 0, +1, +2, +3 ...

Заметим, что код золотой пропорции (6) является весьма широким обобщением классической двоичной системы счисления (случай р = 0) и системы Бергмана (р = 1). При р = x код золотой пропорции сводится к "унитарному коду".

Таким образом, р-коды Фибоначчи (3) и коды золотой р-пропорции (6) есть не что иное, как весьма широкое обобщение классического двоичного представления. Для представления чисел они используют те же двоичные символы 0 и 1 и по форме представления ничем не отличаются от классического двоичного кода. Различие между ними возникает только на этапе интерпретации весов двоичных разрядов. Например, одна и та же комбинация двоичных знаков 1001101 представляет в двоичной системе счисления различные числа, а именно число 45 = 26 + 23 + 22 + 20 в классической двоичной системе счисления, число 19 = 13 + 3 + 2 + 1 в коде Фибоначчи (1) и число А = τ6 + τ3 + τ2 + τ0 - в "Тау-системе" (2), где

_
τ = 1 + √5
2

золотая пропорция. Заметим, что число А является иррациональным числом! А это означает, что в "Тау-системе" мы можем представлять некоторые иррациональные числа в виде конечной совокупности битов! В этом и состоит первый неожиданный результат, вытекающий из теории кодов золотой пропорции.

Основное преимущество кодов Фибоначчи и кодов золотой пропорции для практических применений состоит в их "естественной" избыточности, которая может быть использована для целей контроля числовых преобразований. Эта избыточность проявляет себя в свойстве "Эмножественности" представлений одного и того же числа. Например, число 19 в коде Фибоначчи имеет и другие кодовые представления:

19 = 1001101 = 1010001 = 1010010 = 0111101

При этом различные кодовые представления одного и того же числа могут быть получены одно из другого с помощью специальных фибоначчиевых операций "свертки" (011 → 100) и "развертки" (100 → 011), выполняемых над кодовым изображением числа. Если над кодовым изображением выполнить все возможные "свертки", то мы придем к специальному фибоначчиевому изображению, называемому "минимальной формой", в которой двух единиц рядом в кодовом изображении не встречается. Если же в кодовом изображении выполнить все возможные операции "развертки", то придем к специальному фибоначчиевому изображению, называемому "максимальной", или "развернутой" формой, в которой рядом не встречается двух нулей.

Именно эти математические результаты стали основой для проектов создания компьютерных и измерительных систем на основе "фибоначчиевого" и "золотого" представлений.