Смекни!
smekni.com

Автоматизация и моделирование технологического процесса (стр. 1 из 4)

Автоматизация и моделирование технологического процесса


1 АВТОМАТИЗАЦИЯ ПРОЦЕССА

Автоматизация – направление развития производства, характеризуемое освобождением человека не только от мускульных усилий для выполнения тех или иных движений, но и от оперативного управления механизмами, выполняющими эти движения. Автоматизация может быть частичной и комплексной.

Комплексная автоматизация характеризуется автоматическим выполнением всех функций для осуществления производственного процесса без непосредственного вмешательства человека в работу оборудования. В обязанности человека входит настройка машины или группы машин, включение и контроль. Автоматизация – это высшая форма механизации, но вместе с этим это новая форма производства, а не простая замена ручного труда механическим.

С развитием автоматизации все более широкое применение находят промышленные роботы (ПР), заменяя человека (или помогая ему) на участках с опасными, вредными для здоровья, тяжелыми или монотонными условиям труда.

Промышленный робот – перепрограммируемый автоматический манипулятор промышленного применения. Характерными признаками ПР являются автоматическое управление; способность к быстрому и относительно легкому перепрограммированию , способность к выполнению трудовых действий.

Особенно важно то, что ПР можно применять для выполнения работ, которые не могут быть механизированы или автоматизированы традиционными средствами. Однако ПР – всего лишь одно из многих возможных средств автоматизации и упрощения производственных процессов. Они создают предпосылки для перехода к качественно новому уровню автоматизации – созданию автоматических производственных систем, работающих с минимальным участием человека.

Одно из основных преимуществ ПР – возможность быстрой переналадки для выполнения задач, различающихся последовательностью и характером манипуляционных действий. Поэтому применение ПР наиболее эффективно в условиях частой смены объектов производства, а также для автоматизации ручного низкоквалифицированного труда. Не менее важным является и обеспечение быстрой переналадки автоматических линий, а также комплектация и пуск их в сжатые сроки.

Промышленные роботы дают возможность автоматизировать не только основные, но и вспомогательные операции, чем и объясняется постоянно растущий интерес к ним.

Основные предпосылки расширения применения ПР следующие:

повышение качества продукции и объемов ее выпуска при неизменном числе работающих благодаря снижению времени выполнения операций и обеспечению постоянного режима «без усталости», росту коэффициента сменности работы оборудования, интенсификации существующих и стимулированию создания новых высокоскоростных процессов и оборудования;

изменение условий труда работающих путем освобождения от неквалифицированного, монотонного, тяжелого и вредного труда, улучшения условий безопасности, снижения потерь рабочего времени от производственного травматизма и профессионально-технических заболеваний;

экономия рабочей силы и высвобождение трудящихся для решения народнохозяйственных задач.


1.1 Построение и расчет схемы модели «жесткий вывод – отверстие печатной платы»

Существенным фактором в реализации сборочного процесса является обеспечение собираемости электронного модуля. Собираемость зависит в большинстве случаев от точности позиционирования и усилий, необходимых для сборки элементов конструкции модуля, конструктивно-технологических параметров сопрягаемых поверхностей.

В варианте, когда в отверстие платы вводится жесткий вывод, можно выделить следующие характерные виды контакта сопрягаемых элементов:

бесконтактный проход вывода через отверстие;

контакт нулевого вида, когда конец вывода касается образующей фаски отверстия;

контакт первого вида, когда конец вывода касается боковой поверхности отверстия;

контакт второго вида, когда боковая поверхность вывода касается кромки фаски отверстия;

контакт третьего вида, когда конец вывода касается боковой поверхности отверстия, а поверхность вывода – кромки фаски отверстия.

В качестве классификационных признаков выделения видов контактов приняты: изменение нормальной реакции в точке контакта; сила трения; форма упругой линии стержня.

На надежную работу установочной головки значительное влияние оказывают допуски отдельных элементов. В процессах позиционирования и перемещения возникает цепочка допусков, которая в неблагоприятных случаях может привести к ошибке при установке ЭРЭ, приводя к некачественной сборке .

Собираемость изделия зависит, таким образом, от трех факторов:

размерных и точностных параметров сопрягаемых поверхностей компонентов изделия;

размерных и точностных параметров сопрягаемых поверхностей базового элемента изделия;

размерных и точтностных параметров позиционирования исполнительного органа с расположенным в нем компонентом.


Рассмотрим случай контакта нулевого вида, схема которого изображена на рисунке 1.1.


Mг


Rг

N

R F l

Q

j

Рисунок 1.1 – Расчетная схема контакта нулевого вида.


Исходные данные:

F – сборочное усилие, направленное по ходу головки;

F = 23 Н;

f – коэффициент трения;

f = 0,12;

l = 8 мм;

j = 45°;

Q =30°.

Rг – реакция сборочной головки, перпендикулярная ее ходу;

N – нормальная к образующей фаски реакции;

.

Мг – изгибающий момент относительно сборочной головки;

1.2 Конструирование захватного устройства

Захватные устройства (ЗУ) промышленных роботов служат для захватывания и удержания в определенном положении объектов манипулирования. При конструировании захватных устройств учитывают форму и свойства захватываемого объекта, условия протекания технологического процесса и особенности применяемой технологической оснастки, чем и обусловлено многообразие существующих захватных органов ПР. наиболее важными критериями при оценке выбора захватных органов являются приспосабливаемость к форме захватываемого объекта, точность захвата и сила захвата.

В классификации захватных устройств ЗУ в качестве классификационных выбраны признаки, характеризующие объект захвата, процесс захвата и удержания объекта, обслуживаемый технологический процесс, а также признаки, отражающие структурно-функциональную характеристику и конструктивную базу ЗУ.

К факторам, связанным с объектом захвата, относятся форма объекта, его масса, механические свойства, соотношение размеров, физико-механические свойства материалов объекта, а также состояние поверхности. Масса объекта определяет требуемое усилие захвата, т.е. грузоподъемность ПР, и позволяет выбрать тип привода и конструктивную базу ЗУ; состояние поверхности объекта предопределяет материал губок, которыми должно быть снабжено ЗУ; форма объекта и соотношение его размеров также влияют на выбор конструкции ЗУ.

Свойства материала объекта влияют на выбор способа захвата объекта, необходимую степень очувствления ЗУ, возможности переориентирования объектов в процессе их захвата и транспортирования к технологической позиции. В частности, для объекта с высокой степенью шероховатости поверхности, но нежесткими механическими свойствами, возможно применение только «мягкого» зажимного элемента, оснащенного датчиками определения усилия зажима.

Разнообразие ЗУ, пригодных для решения сходных задач, и большое число признаков, характеризующих их различные конструктивно-технологические особенности, не позволяют построить классификацию по чисто иерархическому принципу. Различают ЗУ по принципу действия: схватывающие, поддерживающие, удерживающие, способные к перебазированию объекта, центрирующие, базирующие, фиксирующие.

По виду управления ЗУ подразделяют на: неуправляемые, командные, жесткопрограммируемые, адаптивные.