Смекни!
smekni.com

Беспроводные телекоммуникационные системы (стр. 8 из 13)

3.2 Методы фазовой манипуляции сигналов (ФМ2, ФМ4, ОФМ)

Фазовая манипуляция (PSK) была разработана в начале развития программы исследования дальнего космоса; сейчас схема PSK широко используется в коммерческих и военных системах связи. Сигнал в модуляции PSK имеет следующий вид:

Здесь фаза φi(t) может принимать M дискретных значений, обычно определяемых следующим образом:

Самым простым примером фазовой манипуляции является двоичная фазовая манипуляция (ФМ2). Параметр E – это энергия символа, T – время передачи символа. Работа схемы модуляции заключается в смещении фазы модулируемого сигнала si(t) на одно из двух значений, нуль или π (1800). Типичный вид сигнала ФМ2 приведен на рис. 3.1.a), где явно видны характерные резкие изменения фазы при переходе между символами; если модулируемый поток данных состоит из чередующихся нулей и единиц, такие резкие изменения будут происходить при каждом переходе. Модулированный сигнал можно представить как вектор на графике в полярной системе координат; длина вектора соответствует амплитуде сигнала, а его ориентация в общем M-арном случае – фазе сигнала относительно других M – 1 сигналов набора. При модуляции ФМ2 (рис. 3.1.б)) векторное представление дает два противофазных (1800) вектора. Наборы сигналов, которые могут быть представлены подобными противофазными векторами, называются антиподными. [2]

Рис. 3.1. Двоичная фазовая манипуляция.


Еще одним примером фазовой манипуляции является модуляция ФМ4 (М=4). При модуляции ФМ4 параметр E – это энергия двух символов, время T – время передачи двух символов. Фаза модулированного сигнала принимает одно из четырех возможных значений: 0, π/2, π, 3π/2. В векторном представлении сигнал ФМ4 имеет вид, показанный на рис. 3.2.

Рис. 3.2. Сигнал ФМ4 в векторном представлении.

Рассмотрим еще один вид фазовой манипуляции – относительную фазовую манипуляцию (ОФМ) или дифференциальную фазовую манипуляцию (DPSK). Название дифференциальная фазовая манипуляция требует некоторого пояснения, поскольку со словом «дифференциальный» связано два различных аспекта процесса модуляции/демодуляции: процедура кодирования и процедура обнаружения. Термин «дифференциальное кодирование» употребляется тогда, когда кодировка двоичных символов определяется не их значением (т.е. нуль или единица), а тем, совпадает ли символ с предыдущим или отличается от него. Термин «дифференциальное когерентное обнаружение» сигналов в дифференциальной модуляции PSK (именно в этом значении обычно используется название DPSK) связан со схемой обнаружения, которая зачастую относится к некогерентным схемам, поскольку не требует согласования по фазе с принятой несущей.

В некогерентных системах не предпринимаются попытки определить действительное значение фазы поступающего сигнала. Следовательно, если переданный сигнал имеет вид

то принятый сигнал можно описать следующим образом.

Здесь α – произвольная константа, обычно предполагаемая случайной переменной, равномерно распределенной между нулем и 2π, а n(t) – шум.

Для когерентного обнаружения используются согласованные фильтры; для некогерентного обнаружения подобное невозможно, поскольку в этом случае выход согласованного фильтра будет зависеть от неизвестного угла α. Но если предположить, что α меняется медленно относительно интервала в два периода (2Т), то разность фаз между двумя последовательными сигналами не будет зависеть от α.

Основа дифференциального когерентного обнаружения сигналов в модуляции DPSK состоит в следующем. В процессе демодуляции в качестве опорной фазы может применяться фаза несущей предыдущего интервала передачи символа. Ее использование требует дифференциального кодирования последовательности сообщений в передатчике, поскольку информация кодируется разностью фаз между двумя последовательными импульсами. Для передачи i-го сообщения (i=1,2,…,M) фаза текущего сигнала должна быть смещена на φi=2πi/M радиан относительно фазы предыдущего сигнала. Вообще, детектор вычисляет координаты поступающего сигнала путем определения его корреляции с локально генерируемыми сигналами

cosω0t и
sinω0t. Затем, как показано на рис. 3.3., детектор измеряет угол между вектором текущего принятого сигнала и вектором предыдущего сигнала.

Рис. 3.3. Сигнальное пространство для схемы DPSK.

Схема DPSK менее эффективна, чем PSK, поскольку в первом случае, вследствие корреляции между сигналами, ошибки имеют тенденцию к распространению (на соседние времена передачи символов). Стоит помнить, что схемы PSK и DPSK отличаются тем, что в первом случае сравнивается принятый сигнал с идеальным опорным, а во втором – два зашумленных сигнала. Отметим, что модуляция DPSK дает вдвое больший шум, чем модуляция PSK. Следовательно, при использовании DPSK следует ожидать вдвое большей вероятности ошибки, чем в случае PSK. Преимуществом схемы DPSK можно назвать меньшую сложность системы. [2]

3.3 Модуляция с минимальным частотным сдвигом.

Одной из схем модуляции без разрыва фазы является манипуляция с минимальным частотным сдвигом (MSK). MSK можно рассматривать как частный случай частотной манипуляции без разрыва фазы. Сигнал MSK можно представить следующим образом.

Здесь f0 – несущая частота, dk=±1 представляет биполярные данные, которые передаются со скоростью R=1/T, а xk – это фазовая постоянная для k-го интервала передачи двоичных данных. Отметим, что при dk=1 передаваемая частота – это f0+1/4T, а при dk=-1 – это f0-1/4T. В течение каждого Т-секундного интервала передачи данных значение xk постоянно, т.е. xk=0 или π, что диктуется требованием непрерывности фазы сигнала в моменты t=kT. Это требование накладывает ограничение на фазу, которое можно представить следующим рекурсивным соотношением для xk.

Уравнение для s(t) можно переписать в квадратурном представлении.

Синфазный компонент обозначается как akcos(πt/2T)cos2πf0t, где cos2πf0t – несущая, cos(πt/2T) – синусоидальное взвешивание символов, ak – информационно-зависимый член. Подобным образом квадратурный компонент – это bksin(πt/2T)sin2πf0t, где sin2πf0t – квадратурное слагаемое несущей, sin(πt/2T) – такое же синусоидальное взвешивание символов, bk – информационно-зависимый член. Может показаться, что величины ak и bk могут изменять свое значение каждые T секунд. Однако из-за требования непрерывности фазы величина ak может измениться лишь при переходе функции cos(πt/2T) через нуль, а bk – только при переходе через нуль sin(πt/2T). Следовательно, взвешивание символов в синфазном или квадратурном канале – это синусоидальный импульс с периодом 2T и переменным знаком. Синфазный и квадратурный компоненты сдвинуты относительно друг друга на T секунд.

Выражение для s(t) можно переписать в иной форме.

Здесь dI(t) и dQ(t) имеют такой же смысл синфазного и квадратурного потоков данных. Схема MSK, записанная в таком виде, иногда называется MSK с предварительным кодированием. Графическое представление s(t) дано на рис. 3.4. На рис. 3.4. а) и в) показано синусоидальное взвешивание импульсов синфазного и квадратурного каналов, здесь умножение на синусоиду дает более плавные переходы фазы, чем в исходном представлении данных. На рис. 3.4. б) и г) показана модуляция ортогональных компонентов cos2πf0t и sin2πf0t синусоидальными потоками данных. На рис. 3.4. д) представлено суммирование ортогональных компонентов, изображенных на рис. 3.4. б) и г). Из выражения для s(t) и рис.3.4. можно заключить следующее: 1) сигнал s(t) имеет постоянную огибающую; 2) фаза радиочастотной несущей непрерывна при битовых переходах; 3) сигнал s(t) можно рассматривать как сигнал, модулированный FSK, с частотами передачи f0+1/4T и f0-1/4T. Таким образом, минимальное разнесение тонов, требуемое при модуляции MSK, можно записать следующим образом:

что равно половине скорости передачи битов. Отметим, что разнесение тонов, требуемое для MSK, – это половина (1/T) разнесения, необходимого при некогерентном обнаружении сигналов, модулированных FSK. Это объясняется тем, что фаза несущей известна и непрерывна, что позволяет осуществить когерентную демодуляцию сигнала. [2]