Смекни!
smekni.com

Выпрямительные устройства (стр. 2 из 2)

1.

- вторичная обмотка

2.

,
(13)

3.

(14)

4. КПД:

(15)

Анализ удобно провести, пользуясь временными диаграммами токов и напряжений, действующих в цепях и элементах схемы ВУ.

Рисунок 7

Можно убедится, что напряжение в каждой фазе может обеспечить ток через вентиль в этой фазе при выполнении 2-х условий:

- это напряжение для вентиля является прямым;

- оно больше чем положительное напряжение в смежных фазах.

Вентиль в рабочей фазе, будучи идеальным представляет собой КЗ и падение напряжения на нем равно 0. Напряжение, на закрытых вентилях образуемое из ЭДС соответствующих фаз и ЭДС работающей фазы, определяется линейным межфазным напряжением.

Подобно формулам для напряжений могут быть выведены формулы для токов. Необходимо принять во внимание, что ток в вентиле:

(16)

(17)

;
(18)

(19)

Если интересоваться действительным значением тока, то необходимо вычислять среднее значение интеграла от квадрата ток и извлекать квадратный корень.

(20)

Для расчета тока первичной обмотки трансформатора необходимо учесть тот факт что постоянная составляющая тока, протекающего по фазам вторичной системы обмоток, не трансформируется.

Трансформируется через коэффициент трансформации только переменная составляющая.

По рассчитанным значениям тока и напряжения в 1-й и во второй обмотках могут быть определены полные мощности в 1-й и во 2-й обмотках и габаритная мощность.

(21)

(22)

(23)

Относительно пульсаций выходного напряжения в данной схеме необходимо отметить следующее:

- как видно из физики работы схемы временных диаграмм за период выпрямляемого напряжения ток в нагрузке появляется 3 раза;

- пульсация напряжения в связи с этим имеет вид полуволн;

- колебания (интенсивность пульсаций) можно оценить рассматривая их гармонические составляющие, т.е. разлагая их в ряд Фурье:

(24)

Пользуясь этим соотношением, запишем коэффициент по К-гармоникам:

(25)

В данном случае m=3

коэффициент пульсации по первой наиболее интенсивной гармонике составит:

Проведенный анализ непосредственно распространяется только на случай чисто активной нагрузки.

Как видно из проведенного анализ особенностью работы выпрямителя на чисто активную нагрузку является:

- напряжение на выходе выпрямителя как функция времени определяется огибающей ЭДС действующих фаз;

- каждая фаза в рассмотренной схеме работает 1 раз за период а импульсы тока через нагрузку вентилей совпадают по форме с действующей фазой ЭДС. Длительность импульса тока равно 2π/м где м – число импульсов тока за период выпрямляемого напряжения;

- работа выпрямителей на чисто активную нагрузку на практике распространена сравнительно мало, т.к. непосредственно выпрямленное напряжение содержит значительную пульсацию. Для сглаживания этой пульсации применяют различные рода фильтры НЧ, которые в любой технике называют сглаживающими.

Простейшими сглаживающими фильтрами (СФ) являются индуктивные фильтры или емкостные.

Таким образом, на практике широко распространены режимы работы выпрямления, на нагрузку с индуктивной или емкостной реакцией.

Эти режимы имеют определенное отличие от режима работы на чисто активную нагрузку. Эти отличия определяют и различия требований к элементам схемы, а также особенности расчетных формул, связывающих напряжение и ток с нагрузки с напряжениями и токами в вентилях и трансформаторах.

Особенности работы выпрямителя на нагрузку емкостного характера

В качестве основы берем ту же схему Миткевича:

Рисунок 8

Считаем что трансформатор идеальный, т.е. Rтр = 0 Xтр = 0 вентили идеальны. Схема совершенно симметрична:

Рисунок 9

Емкость (мгновенно в идеальном случае) заряжается до напряжения в фазе и напряжение на емкости будет, изменяется в соответствие с ЭДС по достижении его максимального значения. При уменьшении напряжения в фазе емкость разряжается на нагрузку по экспоненциальному закону и если напряжение на ней выше, чем в фазе, вентиль закрывается разностью этих воздействий.

Принято оценивать длительность импульса тока угловой мерой

.
- угол отсечки.

Если мы увеличиваем нагрузку, то длительность импульса тока уменьшается и наоборот.

Как видно из проведенного рассуждения.

Работа выпрямителя на нагрузку емкостного характера. Особенности:

- напряжение на выходе выпрямителя

представляет собой сравнительно сложную функцию, составленную из периодически чередующихся отрезков косинусов и экспоненты:

Рисунок 10

- длительность импульса тока а фазе и в вентиле

(чаще всего)

- отведенное время для работы фазы.

При прочих требованиях к току в нагрузке, ток через вентиль в импульсном режиме, соответствующем емкостному характеру нагрузки, имеет большую амплитуду, чем в случае чисто активного сопротивления нагрузки.

Таким образом, требования к пропускной способности вентиля по току при работе на емкостную нагрузку, существенно увеличивается против случая с активной нагрузкой, что является платой за достигаемое сглаживание пульсаций.


ЛИТЕРАТУРА

1. Иванов-Цыганов А.И. Электротехнические устройства радиосистем: Учебник. - Изд. 3-е, перераб. и доп.-Мн: Высшая школа, 200

2. Алексеев О.В., Китаев В.Е., Шихин А.Я. Электрические устройства/Под ред. А.Я.Шихина: Учебник. – М.: Энергоиздат, 200– 336 с.

3. Березин О.К., Костиков В.Г., Шахнов В.А. источники электропитания радиоэлектронной аппаратуры. – М.: Три Л, 2000. – 400 с.

4. Шустов М.А. Практическая схемотехника. Источники питания и стабилизаторы. Кн. 2. – М.: Альтекс а, 2002. –191 с.