Смекни!
smekni.com

Дискретизация обычных и двумерных сигналов (стр. 1 из 2)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра РЭС

реферат на тему:

"Дискретизация обычных и двумерных сигналов"

МИНСК, 2009

Дискретизация

Исключительно важным положением теории связи, на котором основана вся современная радиотехника, является так называемая теорема отсчетов, или теорема Котельникова. Эта теорема позволяет установить соотношение между непрерывными сигналами, какими являются большинство реальных информационных сигналов – речь, музыка, электрические сигналы, соответствующие телевизионным изображениям, сигналы в цепях различных радиотехнических систем и т.п., и значениями этих сигналов лишь в отдельные моменты времени – так называемыми отсчетами. На использовании этой связи строится вся современная цифровая радиотехника – цифровые методы передачи и хранения звуковых и телевизионных сигналов, цифровые системы телефонной и сотовой связи, системы цифрового спутникового телевидения и т.д. Можно сказать больше: будущее всей техники обработки сигналов - в ее цифровой реализации. Пройдет еще 10 – 20 лет - и мы будем вспоминать о традиционных аналоговых методах формирования и приема сигналов, их обработки и хранения лишь в теоретическом плане. Вся практическая радиотехника, связанная с обработкой информационных сигналов, перейдет на цифровую реализацию.

Теорема дискретизации, или, как ее еще называют, теорема Котельникова, теорема Уитекера, формулируется следующим образом: непрерывная функция Х(t) с ограниченным спектром, то есть не имеющая в своем спектре

(1)

составляющих с частотами, лежащими за пределами полосы f Î (-Fm, Fm), полностью определяется последовательностью своих отсчетов в дискретные моменты времени X(ti), следующих с шагом Dt < 1/Fm.

Доказательство сформулированной теоремы основывается на однозначном соответствии между сигналами и соответствующими им спектрами. Иными словами, если сигналы одинаковы, то и соответствующие им спектры также одинаковы. И, наоборот, если спектры двух сигналов одинаковы, то и соответствующие сигналы также одинаковы.

Приведем простейшее доказательство теоремы Котельникова, для чего сначала покажем, каким образом спектр дискретной последовательности отсчетов { Х(ti) } связан со спектром непрерывной функции Х(t).

Последовательность отсчетов непрерывной функции Х(t) можно представить в виде произведения Х(t) на периодическую последовательность d-импульсов (решетчатую функцию) с периодом

t:

(2)

Тогда спектр (преобразование Фурье) дискретизованной функции Х(ti) можно записать в следующем виде:

(3)

или, с учетом "фильтрующего" свойства d-функции, выражение (3) приобретет свою окончательную форму:

(4)

Нетрудно заметить, что спектр периодически дискрeтизованной функции Х(i

t) также становится периодическим, с периодом 1/
t.

Действительно,

(5)

Такой же результат, но несколько иным способом можно получить, если вспомнить, что произведению функций во временной области соответствует свертка их спектров, и тогда

(6)

Спектр "решетчатой функции" также имеет вид периодической последовательности d-импульсов, но уже по частоте и с периодом

f = 1/
t, то есть

(7)

Произведя свертку и с учетом "фильтрующего свойства" d-функции получим

(8)

Таким образом, спектр дискрeтизованной функции Х(i Dt) получается путем периодического, с периодом 1/

t, повторения спектра исходной функции Х(t).

Из последнего выражения видно также, что для k = 0

(9)

иными словами, составляющая спектра дискрeтизованной функции для k = = 0 с точностью до постоянного множителя 1/

t совпадает со спектром исходной непрерывной функции Х(t). Следовательно, если каким-либо образом можно выделить из полного (периодического) спектра последовательности Х(ti) лишь составляющую с k = 0, то тем самым по дискретной последовательности Х(ti) восстановится непрерывная функция Х(t).

Из выражения (9) следует, что устройством, позволяющим выделить из спектра дискретизованного сигнала Х(ti) составляющую, полностью совпадающую со спектром исходного сигнала Х(t), является идеальный фильтр нижних частот (ФНЧ) с частотной характеристикой вида

(10)

При этом спектры, соответствующие различным значениям k, могут быть разделены только при условии их неперекрываемости. Неперекрываемость же спектров обеспечивается при выполнении условия

Fm ≥ 1/ Δt - Fmили Δt ≤ 1/ 2Fm, (11)

откуда и вытекает значение интервала дискретизации Δt, обеспечивающего восстановление исходного сигнала Х(t) по последовательности его отсчетов.

Импульсная переходная характеристика фильтра, восстанавливающего непрерывный сигнал по дискретной последовательности его отсчетов, может быть получена как преобразование Фурье от частотной характеристики (11) и имеет вид

h(t) = F-1 {H(f) } = sinc (2pFmt). (12)

Пропуская дискретную последовательность Х(ti) через фильтр с импульсной характеристикой h(t), получим исходный непрерывный сигнал:

(13)

Процесс дискретизации непрерывной функции X(t) и ее восстановления по дискретной последовательности отсчетов X(ti) иллюстрируется рис.1:


Рис. 1.


Таким образом, по дискретной последовательности отсчетов функции Х(i Dt) всегда можно восстановить исходную непрерывную функцию Х(t), если отсчеты брались с интервалом Dt £ 1/2Fm. Это говорит о том, что не существует принципиальных различий между непрерывными и дискретными сигналами. Любой непрерывный сигнал с ограниченным спектром (а все реальные сигналы имеют ограниченный спектр) может быть преобразован в дискретную последовательность, а затем с абсолютной точностью восстановлен по последовательности своих дискретных значений. Последнее позволяет также рассматривать источники непрерывных сообщений как источники дискретных последовательностей, переходить, где это необходимо и удобно, к анализу дискретных сообщений, осуществлять передачу непрерывных сообщений в дискретной форме и так далее.

Практические вопросы дискретизации реальных сигналов

Сообщения, передаваемые по каналам связи (речь, музыка, телевизионный сигнал, телеметрические данные и т.д.), на практике являются функциями с ограниченным спектром. Например, верхняя частота спектра Fm примерно равна: для речи - 3,5 кГц, для музыки - 10 - 12 кГц (удовлетворительное воспроизведение), для телевизионных сигналов - 6 МГц.

Некоторая некорректность состоит в том, что теорема отсчетов доказана для функций Х(t), заданных на неограниченном интервале t Î (-¥, ¥). Соответственно отсчеты { Х(i Dt),i = 0, ±1, ±2,. . } представляют собой бесконечную последовательность. Однако в реальных условиях сообщения Х(t) имеют начало и конец, а следовательно, конечную длительность T< ¥. Условия финитности спектра и конечной длительности сообщения, строго говоря, несовместимы. Спектр функции с конечной длительностью теоретически имеет значения, отличные от нуля, при любых значениях частоты FÎ(-¥, ¥). Тогда при любом выборе шага дискретизации Dt соседние боковые полосы спектра (см. рис.1) перекрываются, и на выходе идеального фильтра нижних частот с частотой среза F = 1/2Dt будет восстановлен сигнал Х*(t), не полностью совпадающий с исходным сигналом Х(t). Во-первых, отсекаются частотные составляющие спектра с |f| >F. Во-вторых, в полосу пропускания фильтра попадают "хвосты" периодического продолжения спектра.

Вместе с тем всегда можно задать шаг дискретизацииDt (или верхнюю частоту спектра Fm=1/2Dt) так, чтобы энергия ЭD, сосредоточенная в отсекаемых "хвостах" спектра (на частотах f >1/2Dt), была пренебрежимо мала по сравнению с энергией всего сигнала Эx. Ошибка восстановления сигнала Х*(t) на выходе фильтра зависит от отношения ЭD /Эx и может быть выбором Dt (или F=1/2Dt) сделана меньше любой заданной величины. Совершенно очевидно, что если искажения сообщений, обусловленные временной дискретизацией, будут значительно меньше искажений, вызванных помехами в канале связи и допустимых техническими условиями для данной системы передачи информации, то такие искажения существенного значения не имеют и могут не учитываться.