Смекни!
smekni.com

Комп’ютерна електроніка (стр. 7 из 14)

Основні параметри підсилювача:

1. Вхідна напруга

2. Вхідний струм

Ці параметри вказують на номінальні значення вхідних сигналів, що забезпечують заданий, як правило, одиничний рівень підсилення.

3.

4. Коефіцієнт підсилення (~105, 106)

5. Вхідний опір

Розрізняють диференційний опір, який вимірюється між входами (інвертуючим та неінвертуючим) та синфазний, що вимірюється між загальним проводом та паралельно замкненими входами.

6. Вихідний опір (~10,100 Ом)

7. Гранична смуга підсилення

8. Швидкість зростання вихідного сигналу (1В за 1мкс)

Структурна схема типового ОП складається з вхідного каскаду узгодження і вихідного каскаду потужності.

Вхідний каскад на транзисторах VT1, VT2 виконується у вигляді диференційного підсилення. Живлення його забезпечується схемою струмового дзеркала на транзисторах VT3, VT4. узгоджений каскад є також диференційним, але виконаний він на транзисторах протилежного типу провідності відносно вхідного каскаду. Сигнал на вихідний каскад VT8, VT9 подається через схему з загальним емітером VT7. для корекції нуля вихідного сигналу при відсутності вхідного застосовують додаткове коло корекції від зовнішнього джерела через Rкор.

Вихідні Re' та Re'' зменшують вихідний опір схеми. Передаточна характеристика ОП є практично лінійною з досить малим значенням динамічного діапазону за вхідним сигналом. Вихідна напруга є дещо меншою за напругу живлення.

3.2 Типові схеми ввімкнення та реалізації математичних операцій з

допомогою операційних підсилювачів

1. Повторювач напруги

При реалізації 100% від’ємного зворотного зв’язку за напругою, що задається із закороченням виходу з інвертуючим входом Uвих = Uвх, при цьому Rвх буде збільшений - Rвх(1+Кu), а вихідний зменшений - Rвих.зв = Rвих./(1+Кu). Uвих = Uвх.н.

Синфазний сигнал практично повністю подавляється, оскільки ΔUвх = Uвх.н - Uвх.і

2. Неінвертуючий підсилювач

В неінвертуючому підсилювачі вхідний сигнал подається на неінвертуючий вхід. До інвертуючого входу вмикаються ланки послідовного зворотного зв’язку за напругою.

Коефіцієнт підсилення за зворотним зв’язком визначається через коефіцієнт підсилення без зв’язку і коефіцієнт передачі ланки зворотного зв’язку β.

.

Величина сигналу, що подається на інвертуючий вхід β визначається через відношення опорів резистивного подільника.

.

Враховуючи, що

, одиницею в знаменнику можна знехтувати.

Отже, коефіцієнт підсилення неінвертуючого підсилювача не може бути меншим одиниці. Величина його повністю визначається ланкою зворотного зв’язку.

Інвертуючий підсилювач

В інвертую чому каскаді і інформаційний сигнал, і сигнал зворотного зв’язку подається на інвертуючий вхід. Таким чином тут реалізовується паралельний зворотний зв'язок. Оскільки вхідний опір є дуже великим, то потенціал інвертуючого входу вважають віртуальним нулем. Коефіцієнт передачі інвертуючого каскаду визначається як добуток коефіцієнту передачі самого підсилювача з зворотним зв’язком та вхідним опором подільника.

Враховуючи, що

, отримаємо:

.

Як видно із останнього співвідношення за рахунок зменшення опру zзз коефіцієнт передачі інвертуючого каскаду ОП може бути як завгодно малим і теж повністю визначається ланкою зворотного зв’язку. При цьому мале значення КU<1 обумовлене не ОП, а вхідним резистивним подільником. Якщо zзз>>z1, то коефіцієнт передачі як інвертуючого, так і неінвертуючого каскадів є досить великі і практично однакові. Різниця полягає тільки в інверсії фази вхідного сигналу в інвертую чому каскаді порівняно з неінвертуючий.

Якщо в ланках зворотного зв’язку використовують суперпозицію сигналів або нелінійні елементи, зв'язок між струмом і напругою в яких описується певним математичним законом, то на схемотехнічному рівні можна реалізувати математичну обробку сигналів.

Схеми додавання і віднімання сигналів

Точку з’єднання R1…Rm на інвертуючому вході можна вважати точкою Кірхгофа, в якій справджується І закон про суму струмів. Якщо окремо використовувати тільки по одному подільнику на інвертуючому та неінвертуючому вході, то одержимо диференційний каскад підсилення, в якому вихідна напруга буде визнчатись різницею напруг неінвертуючого та інвертуючого сигналів.

Uвих = Uвх.н – Uвх.і

Коли в каскаді буде виконуватись вимога пропорційності відповідних вхідних резистивних подільників

, амплітуда вхідних сигналів на інвертуючому та неінвертуючому входах буде однаковою, то ми одержимо синфазні сигнали і вихідний сигнал буде рівний нулю. В протилежному випадку сигнали, які подаються на неінвертуючий вхід будуть додаватися, тобто ми одержимо найпростіший суматор; сигнали, що подаються на інвертуючий вхід є протифазними, тому вони теж додаються, але з протилежним знаком, таким чином одержимо схему віднімання сигналів. При наявності всіх диференційних сигналів реалізовується схема додавання та віднімання.

Інтегруючий підсилювач

Інтегруючий підсилювач – це каскад, в якому паралельний зворотний зв'язок задається за допомогою ємності конденсатора.

Ланка зворотного зв’язку реалізується у вигляді RC-кола. За І законом Кірхгофа справедливе співвідношення для струмів на інвертуючому колі:

Вихідна напруга визначається як інтегральна функція від напруги на вході. Якщо на вході використати ланку резистивного суматора, тобто паралельно подати кілька вхідних сигналів через окремі резистори, то одержимо інтегруючий суматор:


Диференціюючий каскад підсилення

Як і в попередньому випадку застосування І закону Кірхгофа дозволяє записати співвідношення струмів для інвертуючого входу:

Таким чином в цьому каскаді одержимо як результат диференціювання вхідного сигналу. Застосування сумуючого входу дозволяє про диференціювати кілька сигналів:

Оскільки струм вхідного кола є лінійною суперпозицією вхідних струмів.


Логарифмуючий підсилювач

Логарифмуючий підсилювач одержуємо при використанні в якості елемента зворотного зв’язку p-n переходу або бар’єру Шоткі. Це зумовлене тим, що зв'язок між напругою і струмом в p-n переході описується експоненційним законом:

Тому за І законом Кірхгофа співвідношення струмів матиме вигляд:

Якщо використовується пряма вітка ВАХ, логарифмування останнього співвідношення приводить до виразу:

Таким чином з точністю до постійної інтегрування можна вважати, що вихідний сигнал є пропорційним натуральному логарифму вхідного сигналу.


Використовуючи багатовходовий логарифматор можна реалізувати логарифмування суми сигналів:

Антилогарифмуючий підсилювач

Зворотній зв'язок реалізується з допомогою лінійного елементу (резистора), а вхідний сигнал подається через нелінійний елемент. Тому співвідношення струмів на інвертуючому вході має вигляд:

.