Смекни!
smekni.com

Методы исследования нелинейных систем (стр. 3 из 4)

Построим характеристику для каждой зоны.

Пусть – a £ x £ a, ¦(x) = 0.

При этом исходная система имеет вид:

(25)

Решение этого уравнения имеет вид

, т.е. наклон фазовых траекторий всюду постоянный (отрицательный).

Определим равновесное состояние системы из условия:


(26)

Это условие выполняется при y = 0, т.е. точка вырождается в прямую линию y = 0 на интервале [– а, а]. Фазовые траектории на участке – а< x < a представляют собой прямые с коэффициентом наклона -1/Т1 при различных значениях начальных условий.

На прямых линиях проставляем стрелки таким образом, чтобы конечное движение стремилось к началу координат.

Пусть х > a,

. При этом исходная система нелинейных уравнений имеет вид

(27)

где ci - семейство изоклин, которое представляет собой прямые параллельные оси х, т.е.

, где
определяется из выражения для

. (28)

Таким образом

. (29)

Задаваясь значениями

, строим семейство изоклин. Определяем углы пересечения изоклин фазовыми траекториями.

Так как

. Например, если
, то a = 90°.

Пусть х < – a,

. Построение выполняем аналогично, так как знак изменился, то будут другие углы пересечений изоклин фазовой траекторией. Фазовый портрет системы приведен на рис. 15.

Рис. 14 Рис. 15

Снимем упрощение К = 0, т.е. рассмотрим влияние отрицательной обратной связи по скорости двигателя на характер фазовой траектории.

При этом уравнения имеют вид:

(30)

Пусть

, при этом переключение будет происходить при условии
(а не условии х = а), это уравнение линии (рис. 16)

. (31)

При этом количество перерегулирований уменьшается; можно подобрать такой наклон, при котором нет переколебаний.

Рассмотрим фазовый портрет без ограничений. В системе без ограничений фазовый портрет можно представить на трехлистной поверхности с наклонными гранями (рис. 17.) При этом лист 2 соответствует зоне нечувствительности z=0, лист 1 соответствует отрицательным значениям z, а лист 3 положительным. Вследствие гистерезиса имеет место частичное наложение листов.

Рис. 16 Рис. 17

Исследуем систему. Исследуем влияние отрицательной обратной связи по скорости двигателя (т.е. влияние величины – К). Пусть значение К увеличивается, при этом наклон прямых уменьшается, и может получиться, что срез будет более пологим чем наклон характеристики в средней части. Это приводит к частым переключениям. Такой режим называется скользящим. Если зона

очень узкая, то движение как бы соскальзывает к установившемуся режиму (рис. 18а).

Если изменить знак обратной связи с отрицательной связи на положительную связь, то при этом изменится наклон линий переключения, и количество колебаний будет увеличиваться, система будет "раскачиваться". Система работает, как генератор и может появиться либо замкнутый цикл – автоколебания, либо расходящийся переходный процесс (рис. 18б).


а) б)

Рис. 18

Достоинства метода: простота и наглядность для систем 2-го порядка; пригодность для любого типа нелинейных элементов.

Недостатки: метод громоздкий для систем выше 2-го порядка, поэтому при n >2 не применяется.

Рассмотрим несколько примеров построения фазовых портретов нелинейных систем управления

Пример 1. Пусть задана система, состоящая из линейной части и нелинейного элемента (усилитель с ограничением по модулю) (рис. 19). Это кусочно-линейная система, так как на отдельных участках она ведет себя как линейная (в области) – а, +а[). Допустим в области (] – а, +а[) коэффициент усиления большой и система неустойчива а фазовый портрет характеризуется особой точкой "неустойчивый фокус". За пределами области коэффициент усиления мал, допустим, что при этом система устойчива и характеризуется особой точкой – "устойчивый фокус".

При больших отклонениях x > |a| общий коэффициент усиления системы мал, система устойчива, процесс затухает.

При малых отклонениях общий коэффициент усиления системы большой – процесс расходится к замкнутой траектории, которая характеризует наличие устойчивых автоколебаний (рис. 20).

В этой системе три типа движений: автоколебания; сходящиеся колебания; расходящиеся колебания



Пример 2. Пусть задана система с характеристикой нелинейного звена типа "зона нечувствительности" (рис. 21). Необходимо построить фазовый

портрет данной системы, определить наличие предельных циклов и проанализировать их устойчивость.


Рис. 21 Рис. 22

Пусть в области [-b, +b] система устойчива, при этом коэффициент усиления – К мал, переходный процесс затухает, особая точка "устойчивый фокус" вне области К – большой, переходный процесс расходится (рис. 22). Эта система имеет неустойчивый предельный цикл, т.е. автоколебания неустойчивы.

Для более сложных нелинейных элементов может быть несколько предельных циклов.

Пример Для заданной системы (рис. 23) построить примерный фазовый портрет.


Рис. 23

Решение: Исходную схему можно представить в виде (рис. 24).


Построим фазовый портрет

1) При – a < x < +a f(x) = 0, а система уравнений имеет вид



Фазовый портрет в этой области представляет семейство прямых с коэффициентом к = -1, а состояние равновесия устойчиво по Ляпунову и представляет отрезок оси y = 0 на интервале – a <x < +a (рис 25).

2) При x > +a f(x) = x – a, а система уравнений имеет вид

Для каждого сi определимугловой коэффициент наклона изоклины – к по формуле

и угол пересечения фазовой траекторией изоклины по формуле a = arctg c, результаты приведены в таблицах 1 и 2.

Таблица 1

Сi 0 1 2 3 -1/2 -2 -3 ¥
k -1 -1/2 -1/3 -1/4 -2 1 1/2 0

Таблица 2

Ci 0 ±1 ±1 ±1 ±1 ±¥
a 0 ±450 ±630 ±710 ±800 ±900

3) При x < – a f(x) = x + a, а система уравнений имеет вид

Левая часть фазового портрета строится аналогично правой.

Пример 4. Для заданной системы (рис. 26) построить примерный фазовый портрет.


Исходную схему можно представить в виде (рис. 27).



Построим фазовый портрет.

1) При –1 < x < +1 f(x) = x, а система уравнений имеет вид


Для каждого сi определимугловой коэффициент наклона изоклины – к по формуле

и угол пересечения фазовой траекторией изоклины по формуле a = arctg c.