Мир Знаний

Підсилювач підмодулятора радіомовного передавача (стр. 3 из 4)

Схема Коефіцієнт гармонік
Спільний емітер 3-10 %
Спільний колектор 1-3 %

В пристрою застосовуються дві комплементарні пари на транзисторах, що ввімкнені по схемі спільний колектор та два транзистора в схемі спільний емітер. Тому їх загальний коефіцієнт нелінійних спотворень дорівнює 6%. Оскільки пристрій охоплений зворотнім зв’язком, то коефіцієнт нелінійних спотворень зменшується. Визначимо коефіцієнт гармонік з урахуванням ВЗЗ:

Отже сумарній коефіцієнт нелінійних спотворень складатиме 0,8%.


1.8 Розробка структурної схеми пристрою на дискретних елементах

Після виконання розрахунків є можливість скласти структурну схему пристрою на дискретних елементах. Регулятор підсилення розміщується після першого каскаду. Структурна схема підсилювача наведена на рисунку 1.1.

1.9 Розробка структурної схеми пристрою на інтегральних мікросхемах

Для того, щоб зменшити та спростити розрахунки, підвищити ремонтопридатність пристрою, зменшити габарити та кількість елементів пристрою замість схеми на дискретних елементах буде використовуватись операційний підсилювач. Бажано використовувати імпортні ІМС, оскільки вони мають кращі властивості та простіші у використанні.

Визначимо коефіцієнт підсилення ОП:

Необхідно обрати підсилювач з такими параметрами:

Таким чином обирається інтегральна мікросхема PA04A [5]. Дана інтегральна мікросхема призначена для використання в якості аудіо-підсилювача класу АВ. Інтегральна мікросхема PA04A фірми Apex виготовлені у корпусах CANspecial з 12 виводами. Вони представляють собою надпотужні операційні підсилювачі та можуть бути використані в якості підсилювачів потужності низької частоти в звуковій апаратурі високого класу. В мікросхемі встроєний захист виходу від короткого замикання в навантаженні та термозахист. Для отримання максимальної вихідної потужності дану ІМС необхідно встановити на радіатор[3].

На рисунку 1.2 зображено схему стандартного включення мікросхеми:

Рисунок 1.2 – Схема стандартного ввімкнення мікросхеми PA04A

За стандартною схемою включення мікросхеми сигнал підсилюється в 20раз, але змінивши параметри зворотного зв’язку можна змінити дане значення. Коефіцієнт гармонік мікросхеми не перевищує 0,005%. Регулюючи напругу живлення можна отримати на опорі 200 Ом вихідну потужність на рівні 150 Вт.

Оскільки ІМС, що використовується для підсилення сигналу не є ідеальною, то вона вносить деякі частотні спотворення в область високих частот. При підсиленні у 2058 разів частота на якій сигнал послаблюється на 3 дБ рівна f-3дБ=10 кГц. Отже, розраховуються частотні спотворення, які буде вносити мікросхема в області ВЧ:

Таким чином, можна зробити висновок, що дана мікросхема не завалює на верхній частоті частотну характеристику більше ніж на 3 дБ, що є задовільним результатом. Але для забезпечення завалу у 3 дБ необхідно ввести додатково коректувальний конденсатор. Його ємність буде розраховано у електричному розрахунку з урахуванням його завалу на 3 дБ.

В якості регулятора гучності можна використати змінний резистор. Така схема буде простішою за схему з додатковим постійним резистором і буде забезпечуватись більша глибина регулювання вхідного сигналу. Оскільки вхідний опір є невеликим, то необхідно використати змінний резистор з невеликим опором. Таким чином обирається резистор PVZ3K301 300 Ом

5%, оскільки використовується узгодження по потужності. Для захисту від постійної складової вхідної напруги на вході регулятора вводиться розділовий конденсатор. Його ємність буде визначена в електричному розрахунку. Структура такого регулятора гучності наведена на рисунку 1.4.

Рисунок 1.3 – Структурна схема регулятора гучності


2. Електричний розрахунок

2.1 Розрахунок регулятора гучності

В схемі підсилювача є два розділових конденсатора. Нехай перший конденсатор, на вході пристрою, забезпечує завал на 2 дБ, а другий, що розміщений між регулятором гучності та підсилювачем, буде підібраний так, щоб забезпечити мінімальний завал. Отже розрахуємо конденсатор С1 у відповідності до опору гучності та необхідного завалу:

Отже, обирається конденсатор С1 К50-15-32 мкФ.

2.2 Розрахунок підсилювача потужності на ІМС

Резистор R2, що формуватиме вхідний опір буде типу С1-4-0,25 Вт-8,2 кОм

2%.

В типовій схемі включення даної мікросхеми [рисунок 1.2] резистори в зворотньому зв'язку розраховані на коефіцієнт підсилення в 25,2 дБ, тому необхідно розрахувати ці резистори для іншого коефіцієнта підсилення. Схема електрична принципова зображена на рисунку 2.2. Нехай резистор R4 буде опором 1 кОм. У відповідності до цього номіналу обирається резистор С1-4-0,25 Вт-1 кОм

2%. Оскільки у схемі є ще один резистор R3 опором 1 кОм, то його тип буде такий же як і резистора R3.

Резистор R5 необхідно розрахувати у відповідності до необхідного коефіцієнта підсилення:


Найближчим резистором є резистор R5 С2-29В-0,125-2МОм±1%.

Резистор R6, що розміщений у корегувальному колі буде типу C1-4-0,25 Вт-120 Ом

2%.

Далі здійснюється розрахунок конденсаторів. Розділовий конденсатор С13 не повинен забезпечувати завал на НЧ, тому:

Обирається конденсатор С9 К50-20В 100 В 4 мкФ.

Конденсатор С8 обирається типу К52-7А-1000 мкФ-63 В.

Конденсатор С7 необхідно підібрати так, щоб він не викликав завал частотної характеристик на НЧ. Тому його розраховують за формулою:

Обирається конденсатор номіналом К52-2-30 В-32 мкФ.

Конденсатор С10 розраховується відповідно до необхідного завалу на 1,57дБ

Обираючи з стандартного ряду номінальних ємностей, приймемо С10 К10-17В-63 В-9 пФ.

Конденсатор С12 не потрібно змінювати, оскільки коло, в яке він входить, розраховано розробниками мікросхеми. Даний конденсатор обирається типу К22-5-63 В-100 пкФ. [5]

Схема електрична принципова розрахованого підсилювача зображена на рисунку 2.3.

Для забезпечення роботи підсилювача в двох діапазонах частот (50 Гц – 6,4 кГц; 150 Гц – 4,5 кГц), потрібно змінювати розділовий конденсатор С1 для забезпечення необхідної смуги пропускання на рівні -3 дБ, тобто, щоб частотні спотворення на крайніх частотах діапазонів дорівнювали 3 дБ.

Конденсатор С1 вже розрахований для нижньої граничної частоти 50 Гц. Розрахуємо ємність розділового конденсатора С2 для нижньої частоти 2-го діапазону 150 Гц.

Отже, за формулою розраховується ємність конденсатора, що забезпечить дані спотворення

Обирається конденсатор С2 К50-20В 100 В 12 мкФ.

Конденсатор С10 вже розрахований для верхньої граничної частоти 6500 Гц. Розрахуємо ємність корегувального конденсатора С11 для верхньої частоти 2-го діапазону за такою формулою

,

де, fв – верхня частота першого діапазону.

Обираючи з стандартного ряду номінальних ємностей, приймемо С11 К10-17Б NPO 12 пФ[5][7].

Отже, остаточна електрична схема першого каскаду з регулятором підсилення та перемикачем діапазонів буде мати такий вигляд, як показано на рисунку 7. Перемикач S1 здійснює перемикання робочих частотних діапазонів підсилювача. В положенні S1.1а і S1.2а – підсилювач працює в діапазоні частот 50 Гц – 6,4кГц, в положенні S1.1б і S1.2б – підсилювач працює в діапазоні частот 150 Гц – 4,5кГц. Схема електрична принципова розрахованого підсилювача зображена на рисунку 2.1.

Рисунок 2.1 – Схема електрична принципова розроблюваного підсилювача

2.3 Розробка блоку живлення

Необхідно розробити блок живлення з двополярною напругою живлення

55 В . Для цього використовується понижуючий трансформатор, діодний міст та фільтруючі конденсатори. Потужність споживання підсилювача дорівнює[6]: