Смекни!
smekni.com

Разработка микшерного пульта (стр. 3 из 6)

Рисунок 2.12

Сигнал еще проходит в блок компрессора, который состоит из 2-х одинаковых схем и служит для обработки левого и правого каналов. После блоков компрессора сигнал поступает на выходы, которых тоже 3 (1 стерео и 2 моно), что позволяет подключить несколько устройств к выходу.

Блок индикации.

Служит для наблюдения за величиной выходного сигнала, чтобы не допустить превышения допустимого сигнала и не вывести из строя последующие чувствительные в перегрузкам устройства.

Схема индикатора представлена на рисунке 2.13.

Рисунок 2.13

С увеличением амплитуды сигнала загораются большее число светодиодов на шкале, первый горит постоянно. Шкала логарифмическая, что наиболее подходящая для слежения за звуковым сигналом. Последний светодиод загорается, когда амплитуда сигнала превышает нормальную.

Блок компрессора

Схема блока представлена на рисунке 2.14

Рисунок 2.14


Служит для улучшения звукового сигнала при звукозаписи для сужения динамического диапазона, ограничения и шумоподавления.

Имеются 4 регулировки для подбора максимально подходящих параметров работы, это: усиление, величина компрессии, крутизна ограничения, регулировка порога чувствительности.

Регулировкой усиления регулируется величина выходного сигнала.

Регулировкой компрессии регулируется отношение характеристики выхода ко входу, это можно наблюдать на рисунке 2.15

Рисунок 2.15

Этой регулировкой обеспечивается выравнивание амплитудной характеристики.

Регулировкой крутизны ограничения, регулируется угол ограничения сигнала после максимального участка компрессии.

Это делается для того, чтобы сигналы выше определенного уровня не перегружали последующие устройства, а сигнал как бы подавляется, этим самым сохраняя стабильную амплитуду не теряя качества сигнала. Регулировка ограничения показана на рис. 2.16.


Рисунок 2.16

Регулировкой порога чувствительности регулируется, насколько будут подавляться сигналы меньше порога подавления. Это необходимо для того, чтобы шумы, имеющие маленькую амплитуду, подавлялись. При звукозаписи это очень важно, в паузах, когда полезный сигнал отсутствует, присутствует шум, который записывается, и уменьшает качество записи. При использовании этого эффекта, когда сигнала нет, шум уменьшается, и его почти не слышно, когда же сигнал появляется, то микросхема снова «включается» и на фоне звука шум уже почти не ощущаем.

Структурная схема микросхемы эффектов показана на рис. 2.17.

Рисунок 2.17


Коэффициент усиления микросхемы равен отношению резистора R1 к R2. В моей схеме применяется коэффициент 1, так как на вход поступает сигнал, амплитуда которой подходит для последующих устройств, больше усиливать сигнал нет смысла.

Сигнал поступает на вход микросхемы через разделительный конденсатор. Проходит через операционный усилитель и через разделительный конденсатор вне микросхемы проходит на блок эффектов, который регулируется с помощью резисторов, подключенных в выводам микросхемы.

Такой эффект выравнивает сигнал по амплитуде, и на выходе получается качественный насыщенный сигнал одинаковой амплитуды, вне зависимости от амплитуды источника.

Выход с микросхемы поступает на выход устройства.

2.5 Выбор и обоснование элементной базы

Основными элементами есть 3 микросхемы: это 5-ти полосный стерео эквалайзер с усилением CXA1352, микросхема эффектов SSM 2166 и микросхема индикатора КА2281. Эти микросхемы импортные, и заменить на отечественные невозможно. В схеме подключения этих микросхем будем использовать резисторы типа С2–23, конденсаторы К50, и конденсаторы малой емкости К10.

Для индикации будем использовать светодиоды диаметром 3 мм.

Для регулирования параметров будем использовать миниатюрные переменные импортные резисторы для уменьшения габаритов и удобства регулирования

Для схем индикации превышения сигнала используем транзисторы типа КТ 361. Это маломощные транзисторы, идеально подходят для включения цепи со светодиодом, которая не потребляет много тока.


3. Разработка конструкции

3.1 Концепция построения конструкции

Конструкция микшерного пульта, проектируемого в данном дипломном проекте, представлена одной конструкторской единицей в форме параллелепипеда с наклонной передней панелью для лучшей видимости панели. Габаритные размеры 250х200х50.

Прибор представляет собой блок настольного типа. За основу построения взят функционально узловой метод компоновки.

Для сборки прибора используется как печатный так и навесной монтаж.

Монтаж элементов, что входят в состав функциональных узлов, выполнен печатным монтажом. Монтаж между узлами осуществляется навесным методом с помощью гибких проводов. Для облегчения процесса монтажа, большинство отверстий присоединения выведены по краям печатной платы, исключения составляют места, где было невозможно из-за миниатюризации делать отверстия по краям. Так как устройство работает в закрытом отапливаемом помещении, влагозащиты устройство не требует.

Корпус прибора состоит из двух основных частей, что значительно облегчает сборку, это основание и крышка (передняя панель), который изготовлены из полистирола. Корпус имеет горизонтальное рабочее положение. Почти все элементы крепятся к передней панели, исключение составляет только разъем и включатель питания, которые закрепляются на правой стенке основания.

Внутри корпуса находятся четыре печатных платы СТРП 720445.019 (А1), СТРП 720446.019 (А2), СТРП 720447.019 (А3) и СТРП 720448.019 (А4), которые выполнены из стеклотекстолита марки СФ-2Н-35–1,5 ГОСТ 10316.

Платы крепятся к передней панели винтами М №хб ГОСТ 17373.

Из-за миниатюризации устройства платы размещены не достаточно удобно для ремонта при замене вышедшего из строя элемента, то использование импортной элементной базы позволяет получить наиболее надежное устройство.

Включатель питания и разъем блока питания закрепляются на боковой стенке основания.

Для фиксации и амортизации прибора на рабочем месте использованы 4 резиновых амортизатора, которые крепятся к дну основания винтами М4х12 ГОСТ 17474–80.

Крышка крепится к основанию сверху винтами М3х8 ГОСТ 17473–80.

Из-за малого потребления тепловой режим внутри устройства будет нормальным и вентиляционные отверстия не нужны.

3.2 Обоснование выбора материалов и покрытий

3.2.1 Выбор материала изготовления корпуса

Корпус устройства изготовляется методом литья под давлением. Полистирол, из которого будет изготовляться корпус имеет следующие свойства, которые приведены в таблице 3.1.

Таблица 3.1

Материал Ударная вязкость в направлении экструзии при +20ºС Разрушающее напряжение при растяжении вдоль экструзии Относительное изменение длинны при разрыве Усадка в направлении экструзии
полистирол 40 кг*см/см2 Не менее 380 кг/см2 Не менее 10% Не более 18%

Благодаря своим свойствам этот материал максимально подходит для изготовления корпуса. Устройство будет более прочным.

Надписи на передней панели выполняем эмалью ПФ-115 ГОСТ 6465–63 черного цвета. Основные характеристики которого приведены в табл. 3.2.


Таблица 3.2

Вид покрытия ГОСТ Условия эксплуатации Режим сушки Рабочаятемпература Материал, что покрывается
t, ºc час.
Эмаль ПФ-115 6465–63 А Н П 25+10100 48 24 -60…+70 полистирол

3.2.2 Обоснование выбора материала для изготовления печатной платы

Основная часть элементов размещена на печатной плате, т. к. это приводит к:

– Увеличение плотности монтажа и возможность микро-миниатюризации изделий.– Гарантированная стабильность электрических характеристик.– Повышенная стойкость к климатическим и механическим воздействиям.– Унификация и стандартизация конструктивных изделий.– Возможность комплексной автоматизации монтажно-сборочных работ.Используем односторонний фольгированный стеклотекстолит. Так как платы изготовляются сравнительно большого размера, выбираем толщину 1,5 мм.Характеристики стеклотекстолита СТФ:– Толщина фольги 18–35 мм.– Толщина материала 0.1–3 мм.– Диапазон рабочих температур –60 +150 с.– Напряжение пробоя 30 Кв/мм.

Выбираем стеклотекстолит марки СФ – 50 – 1,5 ДСТ 10316 – 76, который производится на основе стеклоткани, пропитанной синтетическими смолами и обладает повышенной механической прочностью. Имеет высокие электроизоляционные свойства, а так же хорошо обрабатывается резанием и штамповкой.

Выбранный стеклотекстолит имеет следующие параметры, которые описаны в таблице 3.3.

Таблица 3.3

Материал Диэлектрическая проницаемость Тангенс угла диэлектрических потерь Электрическая проницаемость теплостойкость плотность
стеклотекстолит 7,3…8,0 0,01…0,1 10…12 130 1,6…1,8

Для защиты проводящего рисунка от окисления и улучшения процесса пайки, плату покрываем сплавом «Розе». Этот сплав имеет низкую температуру плавления, что позволяет избежать возможных отслоений токоведущих дорожек в процессе нанесения покрытия и пайке. Основные параметры сплава «Розе» приведены в таблице 3.4.