Смекни!
smekni.com

Расчет и проектирование светодиода (стр. 2 из 7)

При изготовлении контактов к кристаллам светоизлучающих диодов верхний омический контакт должен быть, с одной стороны, минимальной площади для уменьшения потерь света, с другой стороны, содержать площадку, согласованную по размерам со сварочным инструментом, а также иметь элементы, обеспечивающие равномерное растекание тока по площади р-n-перехода. Для достижения последней цели применяют также дополнительное поверхностное легирование структуры, например методом диффузии. Равномерное растекание тока по площади р-n-перехода улучшает стабильность диодов в процессе работы и вывод излучения из кристалла.

Нижний контакт может быть сплошным, если подложка непрозрачна для генерируемого излучения, и может быть отражающим свет для кристаллов с прозрачной подложкой. Во втором случае площадь омических контактов должна быть, с одной стороны, минимальной для обеспечения максимальной доли отраженного света, а с другой стороны, достаточной для обеспечения необходимого теплоотвода от кристалла и необходимой величины прямого напряжения.

Отражение света отражающим нижним контактом основано на эффекте полного внутреннего отражения света, падающего на границу раздела полупроводник-диэлектрик под углом, большим критического. Отраженный от нижней грани свет повторно падает на верхнюю или боковые грани кристалла и увеличивает долю выводимого из кристалла света. Этот процесс может повторяться несколько раз.

В последнее время изготавливают также кристаллы с мезаструктурой на основе высокоэффективных жидкостно-эпитаксиальнйх структур со сплошным р-n-переходом. Достоинства таких кристаллов следующие:

1) для структур с сверхлинейной зависимостью квантового выхода излучения от плотности тока (например, GaP : N) применение мезаструктур позволяет увеличить плотность тока и, тем самым, эффективность приборов;

2) уменьшение размеров светящейся области кристалла повышает эффективность оптической системы диода и, тем самым, эффективность прибора в целом;

3) увеличение плотности тока способствует повышению эффективности диодов при малых токах питания, что позволяет применять их в устройствах с батарейным питанием;

4) расширяется диапазон токов, в котором наблюдается линейная зависимость мощности излучения от тока, что позволяет использовать светоизлучающие диоды в аналоговых оптоэлектронных устройствах;

5) наличие травленой поверхности в месте выхода р-n-перехода наружу и отсутствие разрушенного резкой слоя повышает стабильность и надежность приборов в эксплуатации;

6) снижается трудоемкость монтажа кристаллов на держатель благодаря применению кристаллов приемлемых размеров.

Кристаллы с мезаструктурой на основе GaP : N из-за увеличения плотности тока в 2-3 раза позволили получить в 1,3-1,5 раза большую силу света, чем дают кристаллы плоской конфигурации с площадью р-n-перехода 0,25/мм2. Увеличение силы света обусловлено характерной для GaP : N зависимостью h»Jn, где J - плотность тока; n»l,5.

Получают некоторое развитие также кристаллы с планарной структурой на основе жидкостно-эпитаксиальных структур со сплошным р-n-переходом, получаемые разделительной диффузией цинка (например, на основе Ga1-xAlxAs гетероструктур р+-р-n-типа). Достоинства приборов на основе таких планарных кристаллов - высокая эффективность, а также стабильность и надежность в процессе эксплуатации. По-видимому, применение жидкостно-эпитаксиальных кристаллов с мезаструктурой или планарным р-n-переходом в дальнейшем будет расширяться для создания приборов с повышенной эффективностью и надежностью.

Следует отметить, что из структур с прозрачной подложкой (например, из GaP структур) могут быть изготовлены также кристаллы полусферической конфигурации. Б этом случае внешний квантовый выход излучения увеличивается за счет уменьшения потерь на полное внутреннее отражение света. В одной из работ получены диоды с зеленым свечением с hвн=0,41 % (на сравнительных диодах с плоским кристаллом hвн=0,17 %). Спектр излучения полусферических диодов более зеленый. Это объясняется тем, что в полусфер ических кристаллах большая часть света выводится после первого падения излучения на поверхность, благодаря чему уменьшается поглощение света в кристалле, особенно в коротковолновой части спектра. Однако полусферические кристаллы из GaP не нашли практического применения в связи с увеличением стоимости прибора.

1.1.3 Устройство светоизлучающих диодов

Выпускаемые промышленностью светоизлучающие диоды по конструкции могут быть разделены на следующие группы:

1) в металло-стеклянном корпусе;

2) в конструкции с полимерной герметизацией на основе металло-стеклянной ножки или рамочного держателя

3) бескорпусные диоды.

а)

б)

в)

а – плоская; б – плоскопланарная; в – волусферическая;

1 – выводы; 2 – кристалл; 3 – полимерная линза.

Рисунок 1.2 Конструкция светодиодов.

Диоды в металло-стеклянном корпусе отличаются высокой надежностью и стабильностью параметров, механической и климатической устойчивостью.

Диоды с полимерной герметизацией по некоторым характеристикам имеют преимущества перед диодами в металло-стеклянной конструкции

а) полимерная герметизация в большей степени позволяет осуществить перераспределение света в пространстве как в направлении сужения диаграммы направленности излучения (с увеличением силы света), так и в направлении ее расширения;

б) полимерная герметизация увеличивает внешний квантовый выход излучения за счет увеличения угла полного внутреннего отражения на границе кристалл –полимер,

в) герметизированные полимерами приборы обладают большей стойкостью к ударным и вибрационным нагрузкам, чем приборы в металло-стеклянных корпусах

г) полимерная герметизация позволяет получить при необходимости малое отношение объема (габарита) прибора к объему (габариту) кристалла;

д) полимерная герметизация благодаря своей технологичности позволяет существенно снизить трудоемкость изготовления приборов и их стоимость. Однако диоды с полимерной герметизацией в настоящее время уступают диодам в металло-стеклянном корпусе в отношении устойчивости к длительному воздействию влажности и резкой смене температур.

Бескорпусные диоды - самые миниатюрные светоизлучающие диоды, используемые в герметизируемой аппаратуре. Кристаллодержатель светоизлучающего диода содержит, как правило, посадочное место для кристалла с отражающими свет стенками. Отражающие стенки охватывают боковое излучение в угле примерно 45-50°. Они в значительной степени сужают диаграмму направленности излучения и увеличивают силу света в осевом направлении. Помещение в посадочное место кристалла с непрозрачной подложкой (например, из Ga0,7Al0,3As) приводит к несколько меньшему эффекту: сужению диаграммы направленности с 120 до 75 ° и увеличению осевой силы света примерно в 1,5 раза.

Одновременно с увеличением силы света и сужением диаграммы направленности излучения применение описанного кристаллодержателя в металло-стеклянных конструкциях приводит к улучшению восприятия излучения за счет увеличения светящейся площади и повышения контрастности. Кристалл и светящееся кольцо отражателя разделены более темным кольцом. Наличие на светящейся поверхности ярких и темных участков увеличивает ее контрастность и способствует лучшему визуальному восприятию.

Значительное перераспределение светового излучения осуществляется полимерной линзой, которая формирует необходимую диаграмму направленности излучения. Форму полимерной линзы выбирают, как правило, такой, что излучающий кристалл располагается между фокусом преломляющей поверхности, образованиой полусферической линзой, и центром этой линзы. Фокусное расстояние определяется по формуле:

f =Rnl(n-1) (1.1)

где R - радиус полусферической полимерной линзы;

n –показатель преломления компаунда.

Расстояние от центра кристалла до центра сферической поверхности определяется в зависимости от заданной диаграммы направленности излучения.

Рассмотрим, каким образом осуществить оптимизацию размеров полимерной линзы для светоизлучающих диодов различного назначения. Угол вывода излучения по отношению к оси прибора равен:

Q=Q-r+I (1.2)

С учетом закона Снелла:

sinr=nsint (1.3)

Получаем выражение для зависимости угла Q от Q отношения S/R:

Q=Q-arcsin[n(S/R-1)sinQ]+arcsin[S/R-1)sinQ] (1.4)

Для диодов с узконаправленным излучением (с углом излучения 5-15°) наиболее целесообразно использовать величину S/R =1,9–2,0. Конкретные значения S/R обычно подбирают с учетом действия отражателя света и рассеивающего эффекта, возникающего при в компаунд диспергирующего наполнителя.

В качестве материала для полимерной герметизации светоизлучающих диодов в большинстве случаев используется эпоксидный компаунд на основе прозрачной диановой смолы. Компаунд отличается весьма высоким светопропусканием. Хранение образцов компаунда при температуре +70-80°C практически не приводит к ухудшению светопропускания. Снижение светопропускания начинает наблюдаться при длительном хранении при температуре +100°C и выше, причем наибольшее поглощение света наблюдается в коротковолновой части видимого спектра. Введение красителя (например, красного) вызывает резкое увеличение поглощения коротковолнового света, но практически не влияет на поглощение света длинноволновой части видимого диапазона. Введение красителей способствует повышению контрастности свечения за счет поглощения рассеянного света окружающего пространства. Физико-механические характеристики компаунда позволяют получать диоды в полимерной герметизации, устойчивые к жестким климатическим и механическим воздействиям.