Смекни!
smekni.com

Фотолитография (стр. 2 из 2)

Термическое действие характеризуется нагревом тканей вплоть до ожогов, электрическое – разложение органических жидкостей, в том числе разложение крови, биологическое действие электрического тока проявляется в нарушении биоэлектрических процессов и сопровождается раздражением, возбуждением и параличом нервных тканей и сокращением мышц.

Степень воздействия электрического тока на организм человека зависит от состояния нервной системы и всего организма. Так, в состоянии возбуждения нервной системы, депрессии, болезни (особенно болезни кожи, сердечно – сосудистой системы, нервной системы и т. д.) и опьянения люди более чувствительны к воздействию протекающего через организм человека тока.

При обслуживании высококачественных установок (например, установок бестигельной заной плавки) появляется опасность воздействия на человека высокочастотного электрического поля.

Санитарными нормами предусмотрены предельно допустимы значения напряженности электрического поля на рабочих местах [297] в диапазоне частот 60 кГц – 3 МГц 50 В/м и 3 – 30 МГц 20 В/м.

Для защиты от прикосновения к находящимся под напряжением частям установок применяют изолирующие устройства и приспособления, дистанционное управление, блокировки и предохранительную сигнализацию.

В случае поражения электрическим током необходимо срочно оказать первую помощь пострадавшему. Основными условиями успеха при этом являются спокойствие, находчивость, быстрота действий, знание и умение оказывающего помощь.

Если пострадавший не может самостоятельно освободиться от токоведущих частей, то необходимо немедленно отключить электроустановку или, если это сделать не удается, отделить пострадавшего от действия тока, для чего следует надеть диэлектрические перчатки и боты, действовать изолирующими клещами. После этого необходимо расстегнуть его одежду, стесняющую дыхание, создать приток воздуха и обеспечить полный покой.

Фотолитография

Литография – это процесс формирования в актиночувствительном слое, нанесенном на поверхность подложек, рельефного рисунка, повторяющего топологию полупроводниковых приборов или ИМС, и последующего переноса этого рисунка на подложки.

Процесс литографии состоит из двух стадий:

- формирование необходимого рисунка элементов в слое актиночевствительного вещества (резиста) его экспонированием и проявлением;

- травления нижележащего технологического слоя (диэлектрика, металла) через сформированную технологическую маску или непосредственного использования слоя резиста в качестве топологической маски при ионном легировании.

В качестве диэлектрических слоев обычно служат пленки диоксида SiO2 и нитрата Si3N4 кремния, а межсоединений – пленки некоторых металлов. Все пленки называют технологическим слоем.

В зависимости от длины волны используемого излучения применяют следующие методы литографии:

- фотолитографию (длина волны актиничного ультрафиолетового излучения λ = 250 : 440 нм);

- рентгенолитографию (длина волны рентгеновского излучения λ = 0.5 : 2 нм);

- электронолитографию (поток электронов, имеющих энергию 10 – 100 КэВ или длину волны λ = 0.05 нм);

- ионолитографию длина волны излучения ионов λ = 0.05 : 0.1 нм).

В зависимости от способа переноса изображения методы литографии могут быть контрактными и проекционными, а также непосредственной генерации всего изображения или мультипликации единичного изображения. В свою очередь, проекционные методы могут быть без изменения масштаба переносимого изображения (М1 : 1) и с уменьшением его масштаба (М10 : 1; М5 : 1).

В зависимости от типа используемого резиста (негативный или позитивный) методы литографии по характеру переноса изображения делятся на негативные и позитивные.

Фотолитография – технологический процесс производства полупроводниковых приборов и интегральных схем, позволяющих создавать приборы с высокими электрическими характеристиками, получать микроизображения любой сложной формы и легко изменять конфигурацию прибора, а также вытравливать меза- и другие структуры в объеме германия, кремния и др. процесс фотолитографии заключается в том, что на поверхности пластины полупроводникового материала выращивают слой окисла (на рис. а), на который наносят тонкий слой особого светочувствительного состава – фоторезистора (рис. б), затем светочувствительный слой экспонируют через специальный трафарет (фотошаблон) с множеством изображений рабочих областей будущего прибора (рис. в и г). Под действием света фоторезист изменяет свои свойства, и в результате проявления (рис. д) на поверхности пластины получают защитный рельефный слой, повторяющий рисунок фотошаблона. При дальнейшем травлении химическому воздействию подвергаются только незащищенные участки полупроводниковой пластины (рис. е); оставшийся фоторезист удаляют (рис. ж и з).

При фотолитографии применяют различные материалы: фотографические (для получения на поверхности полупроводниковых пластин светочувствительных слоев – фотоэмульсии); химические (растворители, проявители, закрепители) и электроизоляционные (оптическое стекло, краски, эмали, лаки).

Основное значение фоторезистов – образование на поверхности полупроводниковой пластины тонкой защитной пленки нужной конфигурации, получающейся в результате светового воздействия. После проявления часть пленки (нужный рисунок) фоторезиста остается на поверхности полупроводниковой пластины и является маской для дальнейших технологических операций (травлений, вакуумного и гальванического осаждения металлов и др.). в основе создания рельефа на поверхности полупроводниковой пластины с помощью фоторезистов лежат фотохимические реакции фотоприсоединения и фоторазложения.

Параметры и свойства фоторезистов. Светочувствительность – величина, обратная экспозиции, требуемой для перевода ФР в растворимое или нерастворимое (в зависимости от того, позитивный или негативный резист) состояние.

Разрешающая способность – максимально возможное количество полос ФР, разделенных промежутками такой же ширины, на 1 мм.

Кислотостойкость – это способность слоя фоторезиста защищать поверхность подложки от воздействия кислотного травителя. Критерием кислотостойкости является время, в течение которого фоторезист выдерживает действие травителя до момента появления таких дефектов, как частичное разрушение, отслаивание от подложки, локальное точечное расстравливание слоя или подтравливание его на границе с подложкой.

Адгезия – это способность слоя фоторезиста препятствовать проникновению травителя к подложке по периметру создаваемого рельефа элементов. Критерием адгезии является время отрыва слоя фоторезиста заданных размеров от подложки в ламинарном потоке проявителя. В большинстве случаев адгезию считают удовлетворительной, если слой фоторезиста 20 * 20 мкм2 отрывается за 20 мин.

По способу образования рисунка на поверхности полупроводниковой пластины фоторезисты делятся на негативные и позитивные. Негативные фоторезисты под действием света образуют нерастворимые участки, после проявления остаются на ее поверхности, а рисунок на поверхности пластины представляет негативное изображение оригинала. Позитивные фоторезисты, наоборот, под действием света образуют растворимые участки, а рисунок на поверхности пластины точно повторяет оригинал.

Для полного удовлетворения нужд планарной и эпитаксиальной технологии в полупроводниковом производстве используют как негативные, так и позитивные фоторезисты. Только сочетание этих фоторезистов позволяет изготавливать полупроводниковые приборы и интегральные схемы с высокими электрофизическими параметрами.

В качестве негативного фоторезиста в полупроводниковой технологии используют состав на основе сложного эфира поливинилового спирта и коричной кислоты – поливинилциннамат (ПВЦ). Синтез ПВЦ обычно осуществляют, перемешивая суспензию поливинилового спирта и хлорангидрида коричной кислоты в пиридине. Готовый полимер тщательно отмывают от следов пиридина.

Другой способ получения ПВЦ исключает использование пиридина. Одномолярный раствор поливинилового спирта и четырехмолярный раствор едкого натра смешивают с метилэтилкетоном, а затем полученный раствор смешивают со вторым раствором, состоящим из метиэтилкетона, толуола и хлорангидрида коричной кислоты, взятых в соотношении 1.6 : 0.24 : 1. смесь охлаждают до температуры – 50С, перемешивают в темноте в течение 1.5 ч, а затем отстаивают. В результате отстоя смесь расслаивается на два слоя, из которых нижний удаляют, а в верхний вводят сенсибилизирующие добавки.

В качестве позитивных фоторезистов в полупроводниковой технике используют составы на основе хинондиазидов и диазосоединений (НХДА), действие которых заключается в легко протекающей замене диазогруппы на другие функциональные группы, в результате чего изменяются физико-химические свойства пленки фоторезиста.

Широкое применение в полупроводниковой фотолитографии нашел состав фоторезиста на основе 1,2-нафтохинондиазида (2)-5-сульфоэфира новолака.

Экспонирование и проявление в процессе ФЛ неразрывно связаны между собой.

Для экспонирования в ФЛ используют проекционный метод переноса изображения путем одновременной передачи изображения ФШ на всю технологическую площадь.

Характеристики установок для совмещения в экспонировании.

Модель Размер обрабатываемых пластин, мм Размер фотошаблона, мм Точность совмещения, мкм Производительность, шт./ч Примечание
УСПЭ-2 60*48*0,6 120*90*1,5 3 50 Увеличение микроскопа -50Х, 80Х, 160Х. Время экспонирования 0,1 с …4 мин.
ЭМ-517А 60*48*0,5 70*70 (3…10) ±5 100 Время экспонирования 0,1…59,9 с
УПСЭ-1 ДЕМ. 207.002 60*48* (0,5…0,6) 100*90*10 3 40 Общее увеличение микроскопа МБС-2…87,5Х. Время экспонирования в автоматическом режиме (8…240) с, в ручном – 240 с.
ЭМ-512А 40 – 60 (толщина 0,1…0,5) 90*90 (3…7) 70*70 (3…10) 1 60 Время экспонирования 0,5…99,9 с. Минимальный размер элемента и зазора между элементами 5 мкм. Входит в линию ДЕМ.142000
ЭМ-524 30-40 (толщина 0,15…0,5) 100*100*10 1,5 30 Минимальный размер элемента и зазора между элементами 5 мкм. Время экспонирования 1…200 с. Метод совмещения – проекционный.
ЭМ-526 40…60 70*70*(3…10)100*100* (3…10) 0,6 60 Минимальный размер элемента и зазора между элементами 2…3 мкм. Время экспонирования 0,5…59,9 с.
ЭМ-544 40…60 70*70*(3…10)100*100* (3…10) 1 100 Минимальный размер элемента 5 мкм. Установка с фотоэлектрическим контролем.
УСП-03 До 50 - 0,5 Общее увеличение 20…400Х.

При проявлении контролируют температуру и величину рН проявителя. При изменении величины рН всего лишь на десятую долю, возможно, изменение размера элемента примерно на 10%.

Сушка проявленного слоя проводится при температуре 393…453 К. температура и характер ее изменения во время сушки также определяют точность передачи размеров изображений.

Для удаления ФР используют деструкцию полимера (например, сульфированием в серной кислоте); обработку в органических растворителях, плазмохимическую, термическую или фототермическую обработку, сводящуюся в основном к окислительной деструкции в кислороде или кислородосодержащих газах.