Смекни!
smekni.com

Характеристика усилителя низкой частоты (стр. 2 из 7)

Выходная мощность усилителя является самым известным и популярным у потребителя параметром усилителя. Параметр казалось бы абсолютно однозначный и не допускающий различных толкований. Но это только на первый взгляд. Многие третьесортные производители в целях рекламы своей продукции приводят самые невероятные значения мощности, выраженные в абсолютно непонятных единицах и неизвестным способом замеренные. Примером служат разнообразные пиковые мощности PMPO (PeakMusicPowerOutput) наиболее часто встречающиеся на подделках китайского производства — единица, не имеющая под собой никакого физического смысла. Некоторые изделия-рекордсмены ухитрялись иметь, по свидетельству очевидцев, маркировку 480 W РМРО, тогда как реальная мощность едва переваливала за 5 Вт!

Выходная мощность (OutputPower, PO) усилителя, часто имеющая при себе некорректную приставку RMS (RootMeanSquare, т.е. среднеквадратическая) представляет собой произведение эффективных (тех самых RMS) значений выходного тока и напряжения. Напомню, что эффективным или действующим значением синусоидального напряжения

где Ua — амплитудное значение. Некорректность заключается в том, что, говоря о мощности, ничего другого, кроме произведения эффективных значений, никогда в виду не имеют, а если говорят о каких-то специальных вещах, то называют конкретный термин, например «импульсная мощность» или «музыкальная мощность». Последний термин представляет интерес и часто встречается в технической документации. Согласно стандарту IEC 283-3 от января 1983 года, под музыкальной мощностью следует понимать максимальную мощность, которую может развивать усилитель на конкретной нагрузке в течение 1 секунды при входном синусоидальном сигнале с частотой 1 кГц, независимо от величины нелинейных искажений. SGS-THOMSON предлагает следующую методику измерения этого параметра. Температура окружающего воздуха всегда предполагается равной 25°С, если не оговорено иное.

1. Установить питающее напряжение усилителя на 10% ниже максимально допустимого рабочего напряжения.

2. Подать на вход синусоидальный сигнал с частотой 1 кГц в виде пачек длительностью 1 с периодом повторения более 60 с.

3. Замерить выходное напряжение через 1 с после начала импульса.

4. Увеличить входное напряжение до появления нелинейных искажений и довести их уровень до 10%.

5. Замерить выходное напряжение и подсчитать выходную мощность по формуле


где Vo — выходное напряжение по п. 4, aRL — сопротивление нагрузки. Такая методика позволяет проводить измерения, не опасаясь тепловых эффектов.

Данный параметр имеет определенный смысл, как некоторый резерв мощности усилителя. Дело в том, что даже если вы слушаете очень тяжелую музыку на максимальной громкости, средняя мощность, тем не менее, далека от максимальной, благодаря большому динамическому диапазону музыкального сигнала. По разным данным она составляет от 20 до 40% от максимальной, однако некоторые фрагменты могут превышать максимальный уровень. Музыкальная мощность позволяет, например, количественно оценить запас мощности, который вы имеете при прослушивании композиций с большим динамическим диапазоном.

Изложенная методика позволяет не только измерить мощность, но и представить себе, какие основные условия нужны для сопоставимой оценки этого параметра. Это, прежде всего, напряжение питания, параметры входного сигнала, сопротивление нагрузки и коэффициент нелинейных искажений. Несоответствие этих параметров приведет к несопоставимым результатам.

Существует также стандарт измерения мощности EIAJ (ElectronicIndustriesAssociationofJapan — Ассоциация электронной промышленности Японии). В нем, в частности, применяется иной ряд напряжений питания, чем у американцев, а выходной сигнал представляет собой насыщенный меандр. Такой сигнал уже ничего общего с музыкальным не имеет и, по-видимому, призван оценить, в какой мере усилитель может заменять собой электроплитку. Очень похожий параметр, называемый максимальной выходной мощностью иногда встречается и у SGS.

Выходная мощность всегда измеряется на активной нагрузке. Это обязательно нужно помнить, так же как и то, что динамики активной нагрузкой не являются. Реактивная нагрузка для усилителя, вообще говоря, это плохо. Чем больше реактивность, тем меньше КПД усилителя, т.к. реактивные токи точно так же выделяют тепло на переходах, но никакой полезной работы не производят. Кроме того, реактивности нарушают режим работы усилителя и могут стать причиной его самовозбуждения, хотя на активной он будет вести себя вполне прилично.

Перейдем теперь к тем параметрам усилителя, которые встретились нам при обсуждении выходной мощности.

Сопротивление нагрузки (LoadResistance, RL) также является важным параметром усилителя. Некоторые виды усилителей рассчитаны на определенное сопротивление нагрузки, другие допускают его изменение в довольно широких пределах. В усилителях выходное сопротивление стараются сделать крайне малым, прежде всего для того, чтобы иметь возможность работать на низкоомную нагрузку и при этом осуществлять ее демпфирование. Это необходимо для того, чтобы убрать паразитные колебания диффузора динамика, возникающие из-за наличия упругих элементов конструкции. Применяются, конечно, и акустические демпфирующие устройства, но роль усилителя тоже весьма важна. Существует такой параметр, как коэффициент демпфирования (DampingFactor), который равен отношению сопротивления нагрузки к внутреннему сопротивлению усилителя. Особенно важен этот параметр при оценке поведения на низких частотах, т.к. средне- и высокочастотные динамики в электрическом демпфировании не нуждаются ввиду большого сопротивления воздуха на этих частотах и малой амплитуды колебаний диффузора.

Рекомендуемое сопротивление нагрузки обязательно приводится во всех спецификациях всех производителей, зато выходное сопротивление усилителя в интегральном исполнении практически нигде не встречается.

С выходной мощностью непосредственно связаны еще два параметра, а именно рассеиваемая мощность и КПД. Рассеиваемой мощностью (TotalPowerDissipation, Ptot) называется разность между суммарной мощностью, потребляемой усилителем от всех источников питания и выходной мощностью, замеряемой непосредственно на выходных клеммах усилителя. Рассеиваемая мощность потому так и называется, что должна быть рассеяна усилителем в окружающее пространство, чаще всего при помощи теплоотвода, т.к. площадь корпуса микросхемы слишком мала, чтобы полностью отвести тепло от кристалла. Тепловую схему интегрального усилителя можно представить себе в виде генератора напряжения Тj и сопротивлений RthjcaseRthj-amb и Rthhs* Поскольку эти сокращения встречаются везде, поясним, что они означают. Слова junction, case, heatsinkambient и thermal означают переход (имеется в виду полупроводниковая структура, т.е. в нашем случае — кристалл), корпус, теплоотвод, окружающая среда и прилагательное тепловой(ое) соответственно, ну а в условных обозначениях они соответственно сокращены. Таким образом, вышеупомянутые сопротивления — это тепловые сопротивления (ThermalResistance, Rth) переход-корпус (микросхемы, конечно), переход окружающая среда (воздух) и тепловое сопротивление собственно теплоотвода (радиатора). Tj — это температура самого кристалла. Rthj_amb самое большое среди всех, определяется исключительно параметрами корпуса и составляет 15...80°С/Вт. Его надо учитывать, только если прибор используется без радиатора. Для тех же корпусов Rthj.case будет составлять величину 1... 15°С/Вт соответственно, что на полтора порядка ниже. Тепловое сопротивление радиатора надо подсчитать самостоятельно, обязательно с учетом того, что между корпусом и радиатором тепловое сопротивление отнюдь не равно нулю, а при наличии плохой изолирующей прокладки может превышать 3°С/Вт. В справочных листках приводится такой параметр, как максимальная температура кристалла (Tj). Следует иметь в виду, что если кристалл нагрет до этой температуры, то дальнейшая работа усилителя невозможна, т.к. любой сколько-нибудь заметный ток приведет к повышению этой температуры и к разрушению микросхемы. Обычно интегральные усилители, имеющие тепловую защиту, при достижении данной температуры отключают усилитель полностью, либо переводят его в режим с отключенными оконечными каскадами. Об этих режимах поговорим несколько позже.

Любая микросхема и любой транзистор имеют ограничения по рассеиваемой мощности и необходимо учитывать, что с повышением температуры, максимальная рассеиваемая мощность снижается. Часто в справочных данных приводится степень снижения рассеиваемой мощности (DeratingFactor) при превышении определенной температуры, выраженная в ваттах на градус (Вт/°С). Чтобы получить значение реальной рассеиваемой мощности, необходимо умножить разницу температур на упомянутый коэффициент, а результат вычесть из паспортной мощности.

Коэффициентом полезного действия (КПД) называется отношение выходной мощности усилителя к общей мощности, потребляемой им от всех источников питания. Измеряют его обычно на частоте 1 кГц, Для большинства интегральных усилителей он составляет примерно 0,6...0,7 при максимальной мощности. Это связано с тем, что они практически все относятся к классу АВ. Исключение составляют так называемые усилители класса D и Т, у которых он может превышать величину 0,9, при теоретическом максимуме равном единице. КПД всех усилителей зависит от выходной мощности.

Поговорим теперь о нелинейных искажениях. Нелинейными они называются потому, что образуются в результате прохождения через цепи, описываемые нелинейными функциями. Такими, к сожалению, являются все без исключения усилительные элементы, все полупроводниковые элементы, магнитопроводы и многие другие изделия, используемые в усилителях. Главная неприятность заключается в том, что при прохождении гармонического сигнала через такие цепи, его спектр обогащается за счет составляющих, которых не было в исходном сигнале. Если эти составляющие являются гармониками основного тона, то есть частотами, в целое число раз превосходящими основную частоту, то такие изменения спектра называются гармоническими нелинейными искажениями и в музыкальном сигнале воспринимаются как не раздражающие. Музыкальный звукоряд построен на октаве, т.е. на удвоении частоты. Поэтому гармоники основного тона — это те же ноты, но взятые на октаву или несколько октав выше. Самое печальное в том, что нелинейные элементы выполняют функцию смесителей. После прохождения такого «смесителя» в спектре сигнала образуются суммарные и разностные частоты основных тонов, а они вовсе не собираются укладываться в стандартный музыкальный звукоряд. Диссонансные компоненты (не поворачивается язык назвать их гармониками) в количестве, на порядок меньшем, чем консонансные, вызывают гораздо более неприятные ощущения, чем последние. Такие искажения называются интермодуляционными (IntermodulationDistortion, ID).