Мир Знаний

Модернизация сети телекоммуникаций района АТС-38 г. Алматы (стр. 8 из 15)

Рассчитаем межстанционные потоки с помощью коэффициента φк.

Значение φк зависит в основном от доли состоявшихся разговоров РР и их продолжительности Тi , числа знаков в номере и в коде станции. При существующих нормах на РР и Тiможно считать для шестизначной нумерации, когда n=6; n1=2 - φк =0,88; тогда

(3.11)

Коэффициент φД в данном случае не будет учитываться, так как все существующие АТС координатного или электронного типа.

Результаты расчетов сведем в таблицу 3.3

Таблица 3.3 Исходящая нагрузка проектируемой АТС

УР, АТС Y/ПР,j YПР,j
УР-2 43,54 38,42
УР-3 28,42 25,11
УР-4 47,05 42,41
УР-5/9 59,97 53,65
УР-6 26,8 23,58
АТСЭ-74/75 11,85 10,53
АТСЭ-71/73 11,14 9,9
АТСЭ-70/72 13,67 12,13
АТСЭ-76/77 11 9,78
ОПТС-3 8,21 7,32
ОПТС-4 9,67 8,6

3.7 Определение входящих потоков нагрузки

Расчет потоков нагрузки, поступающих по входящим СЛ на SM проектируемой АТС от существующих АТС или узлов ГТС, производится по методике, изложенной в предыдущем разделе. С начала для каждой станции определим возникающую нагрузку на входе ступени ГИ, подлежащую распределению между всеми АТС сети. Затем найдем коэффициенты hс и h.

Определим нагрузку к другим АТС с учетом внутристанционной нагрузки, по формуле:

(3.12)

Нагрузка на входы SM проектируемой АТСЭ, поступающая с выходов IГИ ДШАТС, определяется по формуле:


(3.13)

Нагрузка, поступающая от одноименных или координатных АТС, определяется по формуле:

(3.14)

Так как, нагрузка с выхода РАТС по пути к проектируемой проходит транзитом через УВС-7, то за счёт продолжительности занятия входа УВС по сравнению с выходом она будет уменьшаться и составит 0,99 нагрузки на входы:

.(3.15)

Так как коммутация соединительных линий , по которым поступают вызовы, с внутристанционными путями происходит после приема номера требуемого абонента, то нагрузка на линии от других АТС подсчитывается следующим образом:

(3.16)

Определим нагрузку, поступающую на вход проектируемой АТСЭ от одноименных или координатных АТС.

Для АТСК-20:


,где

φк=0,98; φд=0,94

Аналогичный расчет сделаем для всех других действующих АТС и результаты сведем в таблицу 3.4.

Таблица 3.4 Входящая нагрузка на проектируемую АТС

АТС Ёмкость Y/исх Y/u,ПР Yu,ПР Yu,ПР,ПР
АТСК-21 10000 271,33 8,3 8,22 8,1
АТСК-22 5000 137,17 4,15 4,11 4,02
АТСК-23 10200 276,58 8,47 8,38 8,22
АТСК24 10200 276,58 8,47 8,38 8,22
АТСК-25 10200 276,58 8,47 8,38 8,22
АТСК-28 7200 196,07 5,99 5,94 5,82
АТСК-29 10200 276,58 8,47 8,38 8,22
АТСК-20 10000 271,33 8,3 8,22 8,1
Всего УР-2 73000 60,01 58,81
АТСК-31 4100 138,03 4,16 4,12 4,03
АТСК-32 10065 272,92 8,35 8,27 8,1
АТСК-35 9300 252,36 7,71 7,63 7,48
АТСК-36 8138 221,32 6,73 6,66 6,53
АТСК-34 3000 83,51 2,5 2,48 2,42
АТСК-30 10200 276,58 8,47 8,38 8,22
Всего УР-3 42103 37,54 36,78
АТСК-41 10000 271,33 8,3 8,22 8,1
АТСК-42 10000 271,33 8,3 8,22 8,1
АТСК-43 10200 276,58 8,47 8,38 8,22
АТСК-46 10200 276,58 8,47 8,38 8,22
АТСК-47 10200 276,58 8,47 8,38 8,22
АТСК-48 9000 244,58 7,46 7,38 7,24
АТСК-49 10200 276,58 8,47 8,38 8,22
АТСК-40 10200 276,58 8,47 8,38 8,22
Всего УР-4 80000 62,72 64,41
АТСК-63 10200 276,58 8,47 8,38 8,22
АТСК-64 8200 223,58 6,81 6,74 6,6
АТСК-65 7000 190,6 5,78 5,72 5,6
АТСК-68 10200 276,58 8,47 8,38 8,22
АТСШ-КУ 60 3100 86,3 2,58 2,56 2,5
Всего УР-6 38700 31,78 31,14
АТСЭ-51 5398 147,91 4,46 4,42 4,33
АТСЭ-52 10000 271,33 8,3 8,22 8,1
АТСЭ-53 10000 271,33 8,3 8,22 8,1
АТСЭ-54 4000 111,11 3,34 3,3 3,24
АТСЭ-55 10000 271,33 8,3 8,22 8,1
АТСЭ-56 10000 271,33 8,3 8,22 8,1
АТСЭ-57 4104 113,55 3,41 3,38 3,31
АТСЭ-58 6000 163,79 4,95 4,9 4,8
АТСЭ-50 4185 115,1 3,46 3,43 3,36
АТСЭ-91 10000 271,33 8,3 8,22 8,1
АТСЭ-92 10000 271,33 8,3 8,22 8,1
АТСЭ-93 10000 271,33 8,3 8,22 8,1
АТСЭ-94 9000 244,49 7,46 7,38 7,24
АТСЭ-97 3050 84,9 2,36 2,33 2,29
АТСЭ-98 256 7,56 0,237 0,235 0,22
АТСЭ-90 10000 271,33 8,3 8,22 8,1
Всего УР-5,9 115993 95,13 93,23
АТСЭ-74/75 16000 430,36 12,39 12,14
АТСЭ-71/73 15000 404,47 11,61 11,38
АТСЭ-70/72 17496 496,42 14,39 14,1
АТСЭ-76/77 14000 399,71 11,47 11,24
ОПТС-3 11000 298,09 8,46 8,29
ОПТС-4 13000 351,41 10,03 9,83

По данным таблиц исходящей и входящей нагрузок составим схему распределения нагрузок.

3.8 Междугородная нагрузка

Междугородную исходящую нагрузку, т.е. нагрузку на заказно-соединительные линии (ЗСЛ) от одного абонента можно считать равной 0,003 Эрл.

Входящую на станцию по междугородным соединительным линиям (СЛМ) нагрузку принимают равной исходящей по ЗСЛ.

Вследствие большой продолжительности разговора (Тм=200 – 400с ) уменьшением междугородной нагрузки при переходе со входа любой ступени искания на её выход обычно пренебрегают. Иначе говоря, величину междугородней нагрузки на всех ступенях искания принимают одинаковой величины.

Поскольку для обслуживания междугородной нагрузки в АТСЭ типа 5ESS не предусмотрены отдельные пучки внутристанционных соединительных путей, то при расчете числа обслуживающих внутристанционных ИКМ линий необходимо к местной нагрузке прибавить междугородную нагрузку.

(3.17)

Общая местная внутристанционная нагрузка Увн складывается из возникающей нагрузки, пересчитанной на выходы SM и замыкающейся в пределах проектируемой АТСЭ и нагрузки, поступающей от других АТС сети к абонентам проектируемой станции.

(3.18)

4 ЦИФРОВЫЕ СИСТЕМЫ УПЛОТНЕНИЯ (ЦСУ) АБОНЕНТСКИХ ЛИНИЙ

4.1 Выбор технологии DSL

Проведя аналитический обзор по технологиям хDSL, можно охарактеризовать, что выбор DSL технологии определяется:

а) необходимой полосой пропускания.

б) удаленностью от телефонной станции.

в)типом оборудования, установленного провайдером услуг на телефонной станции.

Таблица 4.1 Основные сравнительные характеристики технологий xDSL

Проведя сравнительный анализ основных характеристик технологий хDSL (таблица 4.1) считаем, что для решения поставленных перед нами задач, нам необходимо использовать оборудование изготовленное на основе технологии HDSL, которое обеспечит нам дальность передачи до 4,5 – 5 километров и скорость передачи до 1,5 мБит/с.

Системы HDSL с модуляцией САР – 64/ САР – 128, могут быть использованы для организации потоков до 2 мБит/с по двум парам, в качестве межстанционных соединительных линий (например, аппаратура WATSON 3 использует CAP-64 и работает по двум парам).

Системы с модуляцией САР могут вызывать наводки на частотные каналы в диапазоне 40—260 кГц, однако остальные каналы не подвергаются какому-либо влиянию, следовательно, есть возможность использования аппаратуры HDSL САР в одном кабеле с аналоговой аппаратурой уплотнения. Системы же HDSL с модуляцией 2B1Q вызывают наводки фактически на все частотные каналы аналоговых систем уплотнения, нагружающих соседние пары, поэтому, как правило, не могут быть использованы в одном кабеле с аналоговой аппаратурой уплотнения.