Смекни!
smekni.com

Автомобильная система видеонаблюдения (стр. 3 из 15)

Кварцевый резонатор ZQ1 с частотой 25МГц, который тактирует работу видеодекодера. Он подключен между входами тактирования XTAL0 и XTAL1. Эти выводы являются соответственно входом и выходом инвертирующего усилителя тактового генератора. Емкости конденсаторов C10 и С11 , подключаемых между выводами резонатора и общим проводом, зависят от типа резонатора. Для кварцевого резонатора необходимы конденсаторы емкостью 10пФ. Оцифрованный сигнал подается на четыре 8-и битных порта. Каждый порт соответствует отдельному сигналу.

5.3 Блок памяти

В данном устройстве блок памяти представляет собой 4-и ИМС Hynix HY27UF082G2M которые напрямую подключаются к портам микроконтроллера и видеодекодера для управления, и записи информации соответственно.

5.4 Блок синхронизации и контроля

На этот блок возложена основная работа устройства, и он состоит из микроконтроллера ATmega1281 (DD6) и разъема ХP2 к которому подключаются датчики и кнопки управления. Рассмотрим элементы необходимые для нормальной работы микроконтроллера.

Кварцевый резонатор ZQ2 с частотой 16 МГц, который тактирует работу микроконтроллера. Он подключен между входами тактирования XTAL1 и XTAL2. Эти выводы являются соответственно входом и выходом инвертирующего усилителя тактового генератора. Емкости конденсаторов C32 и С33 , подключаемых между выводами резонатора и общим проводом, зависят от типа резонатора. Для кварцевого резонатора необходимы конденсаторы емкостью 30пФ.

Как правило, устройства, использующие микроконтроллеры, должны начинать работу при включении питающего напряжения. Для установки внутренних регистров в исходное состояние на вывод 1 (RST) необходимо подать единичный импульс длительностью не менее 16 периодов тактовой частоты. В данной схеме начальный сброс микроконтроллера выполняется нажатия кнопки RST, которая подключена к разъему XP2

Для ввода некоторой информации от пользователя самым простым способом является клавиатура. При этом заказывать специализированную клавиатуру для каждого отдельного устройства достаточно дорого. В таком случае наиболее простой способ составить из отдельных кнопок необходимую клавиатуру. При этом обработка нажатий кнопок ведется с помощью микроконтроллера. Существует несколько основных способов обработки нажатий клавиатуры – по прерыванию или периодически опрашивая клавиатуру. Обработку по прерыванию удобно использовать, когда нажатие кнопки будет редким, не основным действием пользователя. В этом случае такая обработка нажатия позволяет микроконтроллеру выполнять свою основную задачу, не «отвлекаясь на проверку клавиатуры», а при нажатии кнопки переходить на обработку нажатия и затем вновь возвращаться к основной программе. Если же клавиатура используется для ввода некоторой последовательности информации, которая затем обрабатывается (как в калькуляторе), то имеет смысл проводить постоянный опрос клавиатуры. Поскольку данное устройство относится ко второму типу, то опрос клавиатуры будет происходить периодическим считыванием порта.

Разъем к которому подключены кнопки и датчики напрямую подключен к портам микроконтроллера.

Кнопки будут использоваться для начального сброса RESET, для старта записи и передачи, а также для выбора необходимой передаваемой информации.


6. РАЗРАБОТКА ПЕЧАТНОГО УЗЛА

6.1 Выбор материала печатной платы

Печатной платой (ПП) называется материал основания, вырезанный по размеру, содержащий необходимые отверстия и, по меньшей мере, один проводящий рисунок. Материал для печатной платы должен обладать следующими свойствами [8]:

- иметь минимальные ε, tgδ, TKp, ТКε;

- для стабильной работы и исключения паразитных емкостей p и Unp максимум;

- ТКЛР печатной платы близок к ТКЛР меди;

- теплопроводность и теплоемкость должны быть максимальны для отвода тепла от печатных медных проводников;

- стойкость к химическим, внешним воздействиям;

- высокие механические свойства (твердость, прочность на изгиб, сжатие, растяжение, вибростойкость);

- допускать возможность обработки резанием и штамповкой;

- сохранять свои свойства при воздействии климатических факторов, а также в процессе создания рисунка схемы и пайки.

Для изготовления печатных плат используются слоистые диэлектрики, лакированные электролитической медью. К материалам для печатных плат предъявляются следующие требования:

- Они должны обладать высокой термостойкостью (260°С в течение 5-20с) и малой влагопроницаемостью (0,2%-0,8%);

- Поверхностное сопротивление при 40°С должно быть не менее 104 МОм.

- Чистота меди должна быть не менее 99,5%;

- Шероховатость не хуже 0,4 мкм.

Основными материалами для изготовления печатных плат являются:

- гетинакс;

- стеклотекстолит.

Гетинакс и стеклотекстолит фольгированные представляют собой слоистые прессованные пластики, изготовленные на основе бумаги (гетинакс) или ткани из стеклянного волокна (стеклотекстолит), пропитанные термореактивными смолами и облицованные с одной или двух сторон медной электролитической фольгой.

Часто для изготовления печатных плат используют стеклотекстолит фольгированный травящийся, который представляет собой листовой прессованный слоистый пластик, изготовленный из стеклоткани, пропитанной искусственной термореактивной смолой и облицованный с одной или двух сторон электролитической фольгой с гальваностойким покрытием или медной электролитической оксидированной фольгой. Он предназначен для изготовления многослойных печатных плат методом металлизации сквозных отверстий.

В качестве материала для изготовления ПП выбираем стеклотекстолит СФ-2-35-1.5 ГОСТ 10316-88 он уверенно выдерживает перепады температур, вибрационные нагрузки, климатические удары (в отличие от гетинакса, который со временем имеет свойство расслаиваться):

- толщина фольги – 35 мкм;

- толщина основания (стеклотекстолита) - 1.5 мм.

6.2 Выбор типа печатной платы

Печатные платы с гибким и жестким основанием по конструкции делятся на такие типы [8]:

- односторонние;

- двусторонние;

- многослойные;

- гибкие;

Для создания устройства целесообразно использовать двустороннюю печатную плату с металлизированными монтажными и переходными отверстиями. Этот тип плат характеризуется высокими коммутационными свойствами, повышенной прочностью соединения вывода навесного элемента с проводящим рисунком платы.

Применение двусторонних плат позволяет облегчить трассировку, оптимально разместить элементы навесного монтажа. Уменьшить габариты платы, следовательно, уменьшить расход материала платы, обеспечить надежное соединение.

Поэтому изготавливаемая печатная плата будет именно двухсторонней платой.

6.3 Выбор класса точности

По плотности монтажа ПП делятся на 5 классов точности. Печатные платы 1-го и 2-го класса точности наиболее просты в исполнении, надежны в эксплуатации и имеют минимальную плотность монтажа. Печатные платы 3-го, 4-го, 5-го класса точности требуют использования высококачественных материалов, инструмента и оборудования [3].

Проектируемое устройство должно иметь небольшие габаритные размеры, плотность монтажа должна быть достаточно высокой. В тоже время на печатной плате необходимо расположить не очень большое количество элементов, поэтому не следует делать монтаж очень плотным. Наиболее распространенным классом точности для устройств подобного типа является класс 4, поэтому и для данной печатной платы выбран этот класс точности.

3-й класс точности предусматривает следующие ограничения:

- Плотность монтажа – высокая;

- Минимальная ширина проводника – 0,15 мм;

- Расстояние между краями соседних элементов не менее 0,15 мм;

- Предельные размеры печатной паты – до 170÷240 мм;

Для вычерчивания взаимного расположения печатных проводников, контактных площадок, монтажных отверстий, переходных отверстий, используется координатная сетка прямоугольной системы координат. Шагом координатной сетки до 1 января 1998 года был шаг 2,5 мм; дополнительным – 1,25; 0,625 мм. С 1 января 1998 г. для размещения соединений на ПП основным шагом координатной сетки является шаг 0,50 мм в обоих направлениях. Если координатная сетка с номинальным шагом 0,50 мм не удовлетворяет требованиям конкретной конструкции, то должна применяться координатная сетка с основным шагом 0,05 мм. Для конкретных конструкций, использующих элементную базу с шагом 0,625 мм, допускается применение шага координатной сетки 0,625 мм. Шаг координатной сетки выбирают в соответствии с шагом большинства ЭРИ, устанавливаемых на ПП. Если есть необходимость применить шаг координатной сетки, который отличается от основных шагов, то он должен быть кратным основным шагам.

Предпочтительными являются следующие шаги координатной сетки:

· n · 0,05 мм, где n = 5, 10, 15, 20, 25;

· n · 0,50 мм, где n = 1, 2, 5, 6, 10.

Допустимые шаги координатной сетки – дюймовые шаги, которые применяют в конструкции ПП, использующих ЭРИ с шагом, кратным 2,54 мм:

· n · 2,54 мм;

· n · 0,635 мм.

Шаг большинства используемых ЭРИ кратный 1.25 мм, поэтому основной шаг координатной сетки будет выбран 1.25 мм.

6.4 Выбор метода изготовления печатной платы

Существует несколько методов изготовления ДПП:

1. Химический метод изготовления ПП. При этом методе рисунок образуется путем удаления проводящего слоя с участков поверхности. Для этого на медную фольгу наносят рисунок схемы, а незащищенные участки удаляют.

Преимущества метода:

- высокая разрешающая способность;

- короткий технологический процесс;

- высокая отработанность.

Недостатки:

- большие потери меди;

- отсутствие металлизации отверстий;

- наличие бокового подтравливания.

2. Электрохимический метод изготовления ПП основан на избирательном осаждении меди на нефольгированный диэлектрик.

Преимущества метода:

- высокая надежность сцепления проводников и металлизированных отверстий.