Мир Знаний

Источники радиоизлучения во Вселенной (стр. 9 из 9)

12. Пахольчик А.Г., Радиоастрофизика, пер. с англ., М., 1973

13. Зельдович Я.Б., Новиков И.Д., Релятивистская астрофизика, М., 1967

14. Дайсон Ф., Тер-Хаар Д., Нейтронные звёзды и пульсары, пер. с англ., М., 1973.

Ссылки:

15. http://www.astronet.ru/db/msg/1188450 Микроволновое фоновое излучение (реликтовое излучение).Р.А. Сюняев.

16. http://www.astronet.ru/db/search.html? kw=14143 Астронет.документы с ключевым словом: Реликтовое излучение.

17. [http://www.krugosvet.ru/articles/97/1009704/1009704a1. htm Реликтовое излучение. Энциклопедия "Кругосвет".

18. http://www.nap.edu/readingroom/books/cosmology/2.html#CMBR The Cosmic Microwave Background Radiation.

19. http://background. uchicago.edu/ The Physics of Microwave Background Anisotropies.

20. http://map. gsfc. nasa.gov/m_mm/pub_papers/firstyear.html First Year WMAP Technical Papers.

21. http://alt-future. narod.ru/Seti/Vzr/vzr1. htm Шкловский И.С., Вселенная, жизнь, разум. М.: Наука., 1987].


[1] Радиоизлуче́ние (радиово́лны, радиочастоты) — электромагнитное излучение с длинами волн 5 Ч 10-5 — 1010 метров и частотами, соответственно, от 6 Ч 1012Гц и до нескольких Гц[1]. Радиоволны используются при передаче данных в радиосетях.

[2]Квазар (англ.quasar — сокращение от QUASi stellAR radio source — «квазизвёздный радиоисточник») — класс внегалактических объектов, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд.

ПУЛЬСАРЫ (англ. pulsars - сокр. от Pulsating Sources of Radioemission - пульсирующие источники радиоизлучения), космические источники импульсного электромагнитного излучения, открытые в 1967 группой Э. Хьюиша (Великобритания). Импульсы пульсаров повторяются с периодом от тысячных долей секунды до секунд с высокой точностью. Большинство пульсаров излучает в радиодиапазоне от метровых до сантиметровых волн. Пульсары в Крабовидной туманности и ряд других излучают также в оптическом, рентгеновском и гамма-диапазонах. Радио-пульсары отождествляются с быстровращающимися нейтронными звездами, у которых имеется активная область, генерирующая излучение в узком конусе. Этот конус бывает направлен в сторону наблюдателя через промежутки времени, равные периоду вращения звезды. Энергия излучения черпается из энергии вращения звезды, поэтому ее период вращения (период пульсара) постепенно возрастает. Кроме радио- пульсаров открыты т. н. пульсары, наблюдающиеся только в рентгеновском или гамма-диапазонах; они имеют периоды от нескольких до сотен секунд и входят в тесные двойные звездные системы. Источник энергии их излучения, согласно современным представлениям, - гравитационная энергия, выделяющаяся при аккреции на нейтронную звезду или черную дыру вещества, перетекающего от соседней нормальной звезды.

[4]Радиогалактика — тип галактик, который обладает намного большим радиоизлучением, нежели обычные галактики. Радиоизлучение наиболее «ярких» радиогалактик превышает их оптическую светимость. Источники излучения радиогалактик обычно состоит из нескольких компонент (ядро, гало, радиовыбросы).

[5] Нейтральный атомарный водород – возможно, самый распространенный элемент в межзвездном пространстве. Он способен излучать радиолинию с длиной волны 21 см, которая была предсказана в 1944 нидерландским теоретиком Х. ван де Хюлстом и обнаружена в 1951 Х.Юэном и Э.Парселом из Гарвардского университета (США). Существование узкой линии в радиодиапазоне оказалось очень полезным: измеряя ее доплеровское смещение, можно очень точно определять лучевую скорость наблюдаемого облака газа. При этом приемная аппаратура радиотелескопа сканирует некоторый диапазон длин волн в районе линии 21 см и отмечает пики излучения. Каждый такой пик – это линия излучения водорода, смещенная по частоте из-за движения одного из облаков, попавших в поле зрения антенны телескопа.

Около 5% водорода в Галактике вследствие высокой температуры находится в ионизованном состоянии. Когда свободные электроны пролетают вблизи положительно заряженных ядер водорода – протонов, они испытывают притяжение, движутся ускоренно и при этом излучают электромагнитные кванты. Иногда, потеряв энергию, электрон оказывается захваченным на один из верхних уровней атома (т.е. происходит рекомбинация). Спускаясь затем каскадно на устойчивый нижний уровень, электрон также излучает кванты энергии. Такое излучение свободных и рекомбинирующих электронов наблюдается в радиодиапазоне от эмиссионных туманностей и позволяет обнаруживать их даже в тех случаях, когда оптическое излучение не может достичь Земли из-за поглощения в межзвездной пыли. Благодаря этому радиоастрономы смогли обнаружить практически все эмиссионные туманности в Галактике.

[6]РАДИОГАЛАКТИКИ — по сравнению с нормальными галактиками (типа нашей Галактики) обладают аномально большим радиоизлучением. Светимость радиогалактик в радиодиапазоне составляет 1040 - 1045 эрг/с (для нормальных галактик 1037 - 1038…

Радиогалактиками называют галактики с мощным радиоизлучением, которое в тысячу и более раз превышает мощность радиоизлучения таких галактик как наша. Причиной мощного радиоизлучения является выброс высокоэнергичных частиц (протонов и электронов) из активного ядра галактики, где они получают большую энергию и разгоняются до околосветовых скоростей. Радиоизлучение возникает при движении быстрых электронов в слабых магнитных полях. Основной поток радиоволн в некоторых случаях исходит из центральной части галактики, а в некоторых – из гигантских по объему областей за пределами галактики, которые обычно расположены симметрично относительно ее ядра. Радиогалактики почти всегда относятся к числу массивных эллиптических галактик. Ближайшая к нам радиогалактика – яркая пекулярная галактика NGC 5128 известная как радиоисточник Центавр А (эллиптическая галактика с протяженным газопылевым диском вдоль ее малой оси, который наблюдается с ребра). Более мощной радиогалактикой является ярчайшая эллиптическая галактика М87 в скоплении Девы. Наиболее мощные из известных радиогалактик излучают (в форме радиоволн) энергию, которая сопоставима с энергией оптического излучения всех звезд галактики вместе взятых. Примером таких объектов является радиогалактика Лебедь А, которая, находясь на расстоянии более миллиарда св. лет от нас, тем не менее, является одним из самых ярких радиоисточников на небе.

[7] Существует класс галактик, который в последние годы привлекает к себе особое внимание астрономов. Речь идет о так называемых «сейфертовских галактиках». Последние представляют собой более или менее нормальные спиральные галактики, но только с очень яркими и весьма активными ядрами. Спектры последних указывают на наличие там в сравнительно малой пространственной области довольно плотных облаков горячего газа, беспорядочно движущихся с огромными скоростями в несколько тысяч км/с. Это свидетельствует о мощном выбрасывании газовых струй из ядер таких галактик. Излучение с непрерывным спектром часто бывает переменным и имеет ту же природу, что оптическое излучение Крабовидной туманности. Это означает, что там идет мощная генерация космических лучей.

[8]Радиоизлучение — (радиоволны, радиочастоты) электромагнитное излучение с длинами волн 5 Ч 10-5 1010 метров и частотами, соответственно, от 6 Ч 1012Гц и до нескольких Гц.