Смекни!
smekni.com

Блок питания мониторов (стр. 10 из 10)

Сравнительно меньшее значение Unp. получается у диодов с барьером Шоттки. У данного типа диодов Unp. составляет 0,4-0,6В при токах до 100А, а время восстановления не более 0,1мкс. Недостатком диода является большой обратный ток и малое допустимое обратное напряжение (20 - 40В).

Для остальных диодов определяющим параметром является teoc.

Мощные выпрямительные диоды в каналах выработки +5В и +12В стоят на радиаторах, т.е. для обеспечения температурного режима работы этих диодов надо обеспечить хороший теплоотвод!

Характерной ошибкой ремонтников при замене вышедших из строя зарубежных диодов является незнание одной характерной особенности. Исторически сложилось так, что у диодов, выпускаемых отечественной промышленностью метка, как правило, наносится со стороны анода. Зарубежные диоды, как правило, имеют метку у катода.

Поэтому ремонтник, извлекая неисправный диод из платы, устанавливает на его место диод отечественного производства, стараясь при этом сохранить расположение метки.

В результате диод оказывается запаян "наоборот", что приводит к выводу ИБП из строя.

Однако необходимо отметить, что и для зарубежных, и для отечественных диодов расположение меток может быть и противоположным.

Поэтому необходимо перед установкой диода на плату разобраться в расположении выводов с помощью омметра, не доверяясь справочникам, в которых иногда встречаются досадные ошибки! Иногда ошибки при маркировке диодов бывают допущены на заводе изготовителе.

Практически встречающиеся неисправности диодов можно разделить на:

обрыв;

короткое замыкание (пробой);

уменьшение обратного сопротивления (утечка);

увеличение прямого сопротивления.

Все эти неисправности легко обнаруживаются при помощи омметра после выпаивания диода из схемы.

Обращаем Ваше внимание на то, что иногда утечка диода проявляется только под напряжением!

Большие сложности возникают при выходе из строя стабилитронов и тиристоров в ИБП, которые обычно являются пороговыми и исполнительными элементами различных защитных схем.

Определение их типов и параметров часто бывает затруднено из-за отсутствия справочной информации и принципиальных схем на ИБП.

Произвольный подбор этих элементов чреват выходом из строя элементов ИБП, которые еще не "сгорели". Поэтому при таких сложных случаях необходимо "снять" принципиальную схему с печатной платы ИБП и тщательно проанализировать принцип ее работы, после чего попробовать подобрать элемент со сходными параметрами, либо попытаться достать аналогичный зарубежный элемент.

9.4 Транзисторы

Транзисторы, применяемые в рассматриваемом классе ИБП, можно условно подразделить на:

силовые высокочастотные (большой мощности);

сигнальные высокочастотные (малой мощности).

Силовые высокочастотные транзисторы применяются в качестве ключей полумостового инвертора и рассчитаны на работу со значительными токами и напряжениями.

Сигнальные транзисторы используются во всех остальных функциональных узлах схемы ИБП.

Во всех схемах рассматриваемого класса ИБП в качестве силовых ключей используются исключительно биполярные транзисторы обратного типа проводимости (n-p-п).

В качестве сигнальных используются транзисторы как прямого (p-n-р), так и обратного типа проводимости. При замене сигнальных транзисторов следует учитывать не только цифровое обозначение транзисторов, но и буквенные обозначения, которые нанесены на корпус. Транзисторы с разными буквенными обозначениями имеют различные параметры (прежде всего - коэффициент усиления по току)!

Практически встречающиеся неисправности транзисторов можно разделить на:

обрыв одного или обоих переходов;

короткое замыкание (пробой) по одному или обоим переходам;

уменьшение обратного сопротивления (утечка) одного или обоих переходов;

пробой по участку коллектор-эмиттер при целостности переходов коллектор-база и эмиттер-база. Все эти неисправности легко обнаруживаются при помощи омметра после выпаивания транзистора из схемы, т.к. каждый из переходов транзистора аналогичен диоду.

9.5 Интегральные стабилизаторы

Рис.15. Интегральные линейные регуляторы напряжения LM7805, LM7812.

Эти микросхемы содержат встроенную защиту от перегрузки по току и тепловую защиту от максимально допустимой температуры кристалла (175°С), что существенно повышает надежность микросхем.

Типовая схема включения этих стабилизаторов приведена на рис.17.

Конденсатор С1 - обычный фильтрующий конденсатор, который должен иметь емкость 1000мкф на 1А тока нагрузки.

Конденсатор С4 используется для сглаживания переходных процессов при внезапных повышениях потребляемого тока и должен иметь емкость примерно 100мкф на 1А тока нагрузки.


Рис.16. Выход ИМС 7805 на режим стабилизации при подаче входного напряжения.

Рис.17. Типовые схемы включения трехвыводных интегральных стабилизаторов положительного (а) и отрицательного (б) напряжений.

В рассматриваемом классе ИБП используются, в основном, для стабилизации отрицательных выходных напряжений трехвыводные интегральные стабилизаторы напряжения типа 7905, 7912 или 7805, 7812.

Структурная схема трехвыводных интегральных стабилизаторов 7805 (К142ЕН5А) и 7812 (К142ЕН8Б) приведена на рис.14.

Основные параметры этих стабилизаторов напряжения приведены в табл.6.

Входной конденсатор С2 устраняет генерацию при скачкообразном включении входного напряжения (Uex), которая возникает в стабилизаторе из-за влияния монтажных емкости и индуктивности соединительных проводов, образующих паразитный колебательный контур (рис.15),

Выходной конденсатор СЗ служит для защиты от переходных помеховых импульсов.

Обычно С2 и СЗ имеют емкость от 0,1 до 1 мкф и должны монтироваться как можно ближе к корпусу стабилизатора. Амплитуда высокочастотных колебаний может превышать максимально допустимое входное напряжение, что приводит к пробою микросхемы, поэтому наличие и исправность С2 является обязательным условием для работы схемы.

Иногда между входом и выходом интегрального стабилизатора включается диод (рис.16). В его отсутствии после выключения из сети ИБП конденсатор, стоящий на выходе стабилизатора разрядится через стабилизатор, что может привести к выходу его из строя.

Минимальное входное напряжение интегрального стабилизатора должно превышать выходное на 2,5В, т.е. для стабилизатора с фиксированным выходным напряжением +5В, например, минимальное входное напряжение составляет +7.5В.

Цоколевка корпусов интегральных стабилизаторов этих серий приведена на рис.80.

Заключение

Наибольшее распространение в схемотехнике источников питания мониторов получил импульсный источник питания, содержащий стабилизатор напряжения, регулирующий элемент которого работает в ключевом режиме.

Использование этого режима позволяет значительно улучшить ряд показателей формирователей питающих напряжений.

Так, импульсный источник питания, по сравнению с линейным, обладает высоким коэффициентом полезного действия (0,7...0,8), меньшей рассеиваемой мощностью выходного транзистора, а, следовательно, и облегченным тепловым режимом всего монитора в целом, малыми размерами импульсного трансформатора и сглаживающего фильтра.

К достоинствам импульсных источников питания относится и возможность групповой стабилизации одновременно нескольких источников питания, а также способность работы в широких пределах изменения сетевого напряжения (от 100 до 260 В).

Недостатками импульсных источников питания считают: высокий уровень радиопомех при функционировании и отсутствие гальванической развязки от сети переменного тока.

Источник питания монитора представляет собой сложное радиоэлектронное устройство, ремонт которого необходимо осуществлять, точно представляя его работу и владея навыками нахождения и устранения дефектов.

При ремонте рекомендуется комплексное использование всех доступных способов поиска неисправностей. При ремонте ИБП необходимо использовать следующие методы:

Метод анализа монтажа.

Б. Метод измерений

В. Метод исключения.

Г. Метод электропрогона.

Д. Метод воздействия.

Е. Метод эквивалентов.

Характерными причинами возникновения аварийных режимов в схеме ИБП являются: "броски" сетевого напряжения, вызывающие увеличение амплитуды импульса на коллекторе ключевого транзистора; короткое замыкание в цепи нагрузки; лавинообразное нарастание тока коллектора из-за насыщения магнитопровода импульсного трансформатора, например, из-за изменения характеристики намагничивания магнитопровода при перегреве или случайного увеличения длительности импульса, открывающего транзистора.

Одной из самых характерных неисправностей является "пробой" диодов выпрямительного моста или мощных ключевых транзисторов, ведущий к возникновению КЗ в первичной цепи ИБП. Пробой диодов выпрямительного моста может привести к ситуации, когда на электролитические сглаживающие емкости сетевого фильтра будет непосредственно попадать переменное напряжение сети. При этом электролитические конденсаторы, стоящие на выходе выпрямительного моста, взрываются.

Литература

1. Чальз Брукс и др. Аттестация А+. Москва. 2002.

2. Марк Минаси. Ваш ПК. Петербург. 2004

3. Гук М. Аппаратные средства IBM PC. Энциклопедия. - СПб.: "Питер", 2000. - 816 с: илл

4. Мураховский В.И., Евсеев Г.А. Железо ПК - 2002. Практическое руководство. - Москва: "ДЕСС КОМ", 2002. - 672 с: илл.

Периодические издания:

5. Компьютерра. Компьютерный еженедельник: 2001-2005. Компьютерра. Спецвыпуски: 2005.

6. HARD'nSOFT. Ежемесячный журнал: 2001-2005.

7. CHIP. Журнал информационных технологий: 2001-2005.

8. Мир ПК 2000-2005

9. Компьютер Пресс 2000-2005

10. Хакер 2002-2005

11. UPGRADE 2000-2005

Интернет-издания:

12. 3DNews.ru

13. 3DVelocity.com

14. AMDNow.ru

15. BoogleTech.com

16. Сontroler Reviews.com

17. DigitalWare.ru

18. HomeToys.com

19. iXBT.com

20. Motherboards.org

21. NVMax.ru

22. PCGuide.com

23. ReactorCritical.ru

24. Sandpile.org