Смекни!
smekni.com

Блок питания мониторов (стр. 8 из 10)

Верхний частотный предел определяется собственным резонансом конденсатора или увеличением тангенса угла потерь на высоких частотах. Нижняя граница определяется наибольшим достижимым на практике значением емкости.

Бумажные и майларовые конденсаторы - это среднечастотные конденсаторы, имеющие относительно большие последовательное сопротивление и индуктивность.

Они используются обычно для фильтрации, шунтирования и развязки, а также во времязадающих цепях и цепях шумоподавления.

Слюдяные и керамические конденсаторы имеют очень малые последовательное сопротивление и индуктивность.

Это высокочастотные конденсаторы, которые обычно используются для высокочастотной фильтрация, шунтирования, как разделительные, времязадающие элементы и для частотного разделения.

Они обычно очень стабильны во времени, при изменении температуры и напряжения.

Конденсаторы из высокосортной керамики (с высокой диэлектрической постоянной) являются среднечастотными.

Они относительно нестабильны во времени, с изменением температуры и частоты.

Их основным преимуществом является высокое по сравнению со стандартными керамическими конденсаторами значения емкости на единицу объема.

Применяют их обычно для шунтирования, блокировки и развязки. Один из недостатков этих конденсаторов состоит в том, что переходные напряжения могут вызвать их повреждения.

Поэтому не рекомендуется использовать их в качестве шунтирующих конденсаторов, включенных непосредственно между шинами источника питания.

Полистирольные конденсаторы обладают исключительно малым последовательным сопротивлением и имеют очень стабильную характеристику емкость-частота.

Из всех перечисленных типов конденсаторов они наиболее близки к идеальному конденсатору.

Типичные области их применения - фильтрация, шунтирование, развязка, времязадающие цепи и шумоподавление.

Характеристики сухих танталовых электролитических конденсаторов аналогичны характеристикам алюминиевых электролитических конденсаторов.

Однако последовательное сопротивление у них меньше, а емкость на единицу объема больше, чем у последних.

Некоторые из твердотельных танталовых конденсаторов имеют достаточно малую индуктивность и могут применяться на несколько более высоких частотах, чем алюминиевые электролитические.

В общем они более стабильны во времени по отношению к изменениям температуры и при ударных нагрузках, чем алюминиевые конденсаторы.

Особое внимание следует уделить алюминиевым электролитическим конденсаторам, как элементам, наиболее часто, по сравнению с другими типами конденсаторов, подверженным выходу из строя.

Основным преимуществом электролитического конденсатора, обусловившего его широкое применение, является большая емкость, которую, можно получить в малом корпусе.

Однако алюминиевый электролитический конденсатор может иметь последовательное сопротивление 1Ом (типичное значение - около 0,1 Ом). Величина последовательного сопротивления увеличивается с ростом частоты (из-за потерь в диэлектрике) и уменьшением температуры.

Из-за больших размеров алюминиевые электролитические конденсаторы имеют также большую индуктивность, поэтому они являются низкочастотными конденсаторами и их не рекомендуется применять на частотах выше З0кГц.

Наиболее часто они используются для фильтрации, шунтирования и развязки на низких частотах.

При использовании на высоких частотах их необходимо шунтировать конденсатором малой емкости с малой собственной индуктивностью. Это необходимо из-за того, что, емкость электролитического конденсатора падает с ростом частоты.

При расчетах может быть использована эмпирическая зависимость, обеспечивающая хорошее приближение в области рабочих частот:

С = 0.77 ۰ Сном ۰ 0,001۰f

где Сном - номинальная емкость конденсатора.

Например, конденсатор с номинальной емкостью 22мкф на частоте 800Гц будет представлять из себя емкость всего лишь в 5мкф!

Поэтому для обеспечения качественной фильтрации во всем диапазоне частот электролитический конденсатор необходимо шунтировать высокочастотным керамическим конденсатором, т.к. емкость электролитического конденсатора на высоких частотах очень незначительна.

Одним из недостатков электролитических конденсаторов является то, что они поляризованы и на них необходимо поддерживать постоянное напряжение соответствующей полярности, т.е. конденсатор может работать только с пульсирующим и не может работать с переменным током.

На практике часты случаи пробоя выпрямительных диодов.

В этих случаях конденсатор оказывается под воздействием переменного тока, протекающего через него в обоих направлениях.

Это ведет к быстрому разогреву конденсатора с последующим выходом из строя и возможностью взрыва.

Взрыв электролитического конденсатора может привести к травме!

Будьте осторожны при включении в сеть ремонтируемых ИБП! Не наклоняйтесь близко к схеме, пытаясь "увидеть" процессы, происходящие в ней - это опасно! Лишь только после того, как Вы убедились, что сразу при включении взрыва не произошло, Вы можете приступить к исследованию схемы к этому времени он как раз нагреется и приготовится рвануть... так что подождите несколько секунд.

Для увеличения срока службы электролитических конденсаторов они должны работать под напряжением, не превышающим 80% максимально допустимого паспортного значения рабочего напряжения.

Соединив два полярных конденсатора одинаковой емкости встречно-последовательно, можно получить неполярный конденсатор, способный работать в цепях переменного тока.

Результирующая емкость такого конденсатора равна половине емкости отдельного конденсатора, а допустимое напряжение - допустимому напряжению отдельного конденсатора.

При использовании электролитических конденсаторов в цепях переменного или пульсирующего постоянного тока напряжение пульсации не должно превышать максимально допустимого значения, которое оговаривается в справочниках.

В противном случае конденсатор будет перегреваться. Температура является основной причиной старения, и поэтому электролитические конденсаторы никогда не следует использовать при температуре, превышающей рекомендованное для них значение.

Именно поэтому на корпусе электролитического конденсатора зарубежного производства наносится не только его номинал и рабочее напряжение, но и предельно допустимое значение рабочей температуры.

Емкость электролитических конденсаторов обозначается на их корпусе в единицах или долях микрофарады, например: 100uF = 100мкф, 2.2uF = 2,2мкф.

Полярность электролитических конденсаторов зарубежного производства обозначается в виде значков (-), которые расположены вдоль всего корпуса конденсатора со стороны вывода его отрицательной обкладки.

Обозначения конденсаторов остальных типов различаются в зависимости от фирмы-изготовителя. При этом некоторые фирмы-изготовители используют кодированные обозначения номиналов конденсаторов.

Код состоит из трех цифр и выражает номинал конденсатора в пикофарадах, Первые две цифры кода являются значащими, а третья цифра представляет собой степень сомножителя 10.

Например, если на конденсаторе имеется надпись 472К, то его номинал 47 х 100 = 4700пф.

Практически встречающиеся неисправности конденсаторов можно разделить на:

обрыв (полная потеря емкости);

пробой (короткое замыкание между выводами);

значительное уменьшение емкости по отношению к номинальной;

повышенная утечка, т.е. возрастание постоянной составляющей тока через конденсатор.

Исправность конденсатора можно проверить путем выпаивания его из схемы и "прозвонки" с помощью омметра (на пробой), а также замера на измерителе емкости (на обрыв и соответствие номиналу).

При этом рекомендуется устанавливать максимальный предел измерения в случае использования стрелочного омметра.

Исправность электролитических конденсаторов, благодаря их большой емкости, может быть в первом приближении оценена по начальному отклонению стрелки омметра. При этом для сравнения полезно иметь под рукой заведомо исправный электролитический конденсатор такой же емкости, как и проверяемый.

В случае исправности проверяемого конденсатора отклонение стрелки должно быть приблизительно таким же, как и для эталонного конденсатора. Полярность подключения щупов омметра должна соответствовать полярности выводов конденсатора ( (+) омметра - к выводу положительной обкладки конденсатора).

При исправном конденсаторе стрелка омметра после отклонения должна медленно вернуться в начало шкалы.

Если этого не произошло и стрелка остановилась, не дойдя на значительное расстояние до начала шкалы, то проверяемый конденсатор имеет повышенное значение утечки и должен быть заменен.

Не забудьте разрядить конденсатор перед его проверкой путем кратковременного замыкания выводов с помощью отвертки или пинцета! Иначе вы рискуете вывести из строя свой измерительный прибор.

Обнаружение таких конденсаторов представляет собой особую сложность при ремонте.

Выпаивание и проверка с помощью омметра в этих случаях результата не дает.

Обнаружить такой конденсатор можно только по нарушению режима работы схемы в месте его установки.

В таких случаях лучше всего заменить подозреваемый конденсатор на заведомо исправный, либо собрать специальную схему для его проверки под напряжением.

Иногда встречаются случаи, когда в результате небрежного обращения с платой керамические конденсаторы, установленные на ней получают механические повреждения.

Такие конденсаторы сразу бросаются в глаза при внимательном осмотре платы.

Они имеют отколотые края, трещины и т.д. Несмотря на то, что они могут быть исправны, такие конденсаторы лучше всего сразу же заменить.