Смекни!
smekni.com

Усилительные каскады переменного тока на биполярных транзисторах (стр. 5 из 6)

Эквивалентная схема каскада в области высших частот показаны на рис.4.10, б. С повышением частоты уменьшается коэффициент h21э и увеличиваются шунтирующее действие емкости коллекторного перехода Ск, Все это приводит к уменьшению усиления в области высших частот. Количественно уменьшение коэффициента усиления по сравнению со средними частотами оценивают с помощью коэффициента частотных искажений модуль коэффициента усиления в области высших частот.

Коэффициент частотных искажений в области высших частот на частоте fВ для каскада ОЭ можно оценить по формуле:

МВ = 1 + (2 p fВ • (Rк + Rн) • Ск • (h21э + 1)) 2, (4.30)

где Ск – справочное значение емкости коллекторного перехода для схемы ОЭ.

Усилитель ОК (эмиттерный повторитель)

Схема усилителя ОК изображена на рисунке 4.11.

Рисунок 4.11. Усилитель ОК

Расчет элементов схемы по постоянному току практически не отличается от подобного расчета элементов усилителей ОЭ. После выбора рабочей точки (рисунок 4.11, б), определяющей режим работы каскада, а также тока делителя в цепи базы (соотношение (4.16)) находят сопротивления резисторов:

(4.31)

В отличие от усилителя по схеме ОЭ схема с общим коллектором не инвертирует входной сигнал. Действительно, если на вход эмиттерного повторителя подать увеличивающееся напряжение, то это приведет к увеличению эмиттерного тока транзистора и соответствующему увеличению его выходного напряжения. Поэтому входной и выходной сигналы в схеме будут изменяться в фазе.

Переменное напряжение, снимаемое с Rнэ, через разделительный конденсатор Ср2 проникает в нагрузку. Эквивалентная схема каскада по переменному току представлена на рисунке 4.12.

Рисунок 4.12. Эквивалентная схема усилителя ОК

На схеме штриховой линией изображено выходное сопротивление источника питания Rи. Как было указано ранее, оно незначительно и им пренебрегают. Поэтому коллектор транзистора оказывается заземленным, т.е. он является общим для входной и выходной цепи. Что и объясняет наименование усилителя (усилитель ОК), хотя из рисунка 4.11, а этого явно не видно.

По сравнению с предыдущими схемами делитель в цепи базы представлен своим эквивалентным сопротивлением Rд, которое вычисляется выражением:

.,(4.32)

Определим входное сопротивление транзистора подобно тому, как это было сделано в разделе 4.7:

,(4.33)

где Rн экв – эквивалентное сопротивление нагрузки:

. (4.34)

Выражение (4.33) говорит о том, что в эмиттерном повторителе можно получить очень большие значения входного сопротивления. Это является одним из основных достоинств каскада ОК.

Окончательное выражение (4.33) было получено на основе учета того, что

.

Считая, как и для предыдущих схем, что весь ток выходного электрода (эмиттера) идет в нагрузку, получаем выражение для определения коэффициента усиления по току:

. (4.35)

Проведем некоторые очевидные преобразования коэффициента усиления по напряжению:

. (4.36)

Следовательно, напряжение сигнала на выходе при подключении нагрузки в цепь эмиттера не увеличивается – оно практически равно входному (в упрощениях при выводе соотношения (4.36) не было учтено входное сопротивление делителя Rд). Этим объясняется наименование усилителя – эмиттерный повторитель.

Аналогично усилителю ОЭ спад усиления на низших частотах эмиттерного повторителя определяется действием Ср1 и Ср2, а на высших – параметрами транзистора. При выборе разделительных емкостей пользуют соотношения, аналогичные приведенным ранее.

Выходное сопротивление каскада

.

Из сказанного следует, что каскад эмиттерного повторителя наиболее удобен для согласования высокоомных источников сигнала с низкоомной нагрузкой (Rвх – велико, Rвых – мало, Ki – велико).

Малое выходное сопротивление каскада делает его идеальным при согласовании усилителя с емкостной нагрузкой.

Усилитель ОБ

Принципиальная и эквивалентная схема по переменному току усилителя ОБ изображены на рисунке 4.14.

Рисунок 4.14. Усилитель ОБ

Расчет сопротивлений резисторов (после выбора режима работы каскада) производится по формулам (4. 20) и (4.21). Если выполнить соотношение

,(4.37)

то получим эквивалентную схему для средних частот (рисунок 4.14).

Рисунок 4.14. Эквивалентная схема усилителя ОБ для средних частот.


Применив упрощения, которые были использованы при расчетах предшествующих схем, получим:

,

. (4.38)

Входное сопротивление каскада определяется выражением (4.26). Входящее в него входное сопротивление транзистора

. (4.39)

значительно меньше сопротивления резисторов делителя в цепи базы (rэ<<Rб1 и rэ<<Rб2).

Эквивалентное сопротивление нагрузки Rн экв определяется параллельным соединением Rк и Rн (см. выражение (4.25)). Поэтому, если rэ<<Rк и rэ<<Rк вх, то усилитель ОБ будет обладать очень большим коэффициентом усиления по напряжению:

,(4.40)

Учитывая большое сопротивление дифференциального резистора обратносмещенного коллекторного перехода для входного сопротивления каскада имеем:

. (4.41)

Усилительные каскады переменного тока на полевых транзисторах

Общие положения

В построении и методах расчета усилителей на основе полевых транзисторов очень много общего с построением и расчетом усилителей на биполярных транзисторах. Также имеются три основных схемы, получивших названия в соответствии с электродом, который является общим для входной и выходной цепи: ОИ, ОС и ОЗ. Правда, последняя, с общим затвором практически не применяется, т.к при этом не удается использовать один из важнейших параметров полевых транзисторов – их большое входное сопротивление.

На усилительном каскаде с полевым транзистором можно обеспечить работу в любом из описанных ранее классов усиления. Аналогично, за исключением выходных каскадов в основном используется режим класса А, который мы и будем рассматривать.

Усилительные каскады на полевом транзисторе, прежде всего, применяют во входных каскадах усилителей. Объясняется это следующими преимуществами полевого транзистора перед биполярным:

большее входное сопротивление, что упрощает его согласование с высокоомным источником сигнала;

как правило, меньший коэффициент шума, что делает его более предпочтительным при усилении слабых сигналов;

большая собственная температурная стабильность режимов покоя.

Вместе с тем, каскады на полевых транзисторах обычно характеризуются меньшим коэффициентом усиления по напряжению, что и ограничивает их применение при построении промежуточных каскадов.

Также как и в предыдущем разделе, расчет каскады на полевых транзисторах для выбранной схемы проводит в три этапа:

определяют режим работы усилителя;

проводят расчет элементов принципиальной схемы по постоянному току;

определяют параметры усилителя по переменному току на основе эквивалентной схемы.

В последующем, чтобы обеспечить простоту и однозначность анализа будем рассматривать транзисторы с каналом п-типа, а заземленным в источнике питания будем считать его отрицательный полюс, относительно которого и будем определять все напряжения. При этих условиях напряжение на стоке должно быть положительным по сравнению с напряжением на истоке. (При р канале наоборот: заземляется положительный полюс и напряжение на стоке меньше, чем на истоке)

Схемотехнические решения, применяемые при построении каскадов на полевых транзисторах, во многом схожи с решениями, используемыми при построении каскадов на биполярных транзисторах. Имеется ряд особенностей полевых транзисторов, обусловленных, прежде всего, различиями входных характеристик трех типов полевых транзисторов и, кроме того, практически отсутствием тока затвора, на который обычно подается входной сигнал.

Усилительный каскад по схеме с общим истоком

Отличия входных (стокозатворных) характеристик разных типов полевых транзисторов, приводит к разным схемотехническим построениям усилительных каскадов на ПТ разных типов, касающихся, прежде всего, схем задания режима работы. В схемах на полевых транзисторах с управляющим р-п переходом напряжение на их затворе должно быть отрицательным по сравнению с напряжением на истоке. В этом случае обеспечивается закрытое (запертое) состояние перехода. На полевых транзисторах с изолированным затвором и встроенным каналом напряжение затвора может быть любым – как отрицательным, так и положительным по отношению к истоку. На полевых транзисторах с изолированным затвором и индуцированным каналом напряжение затвора может быть только положительным по отношению к истоку. Отсутствие входных токов на затвор позволяет обеспечить необходимое распределение напряжений только за счет внешних резисторов и схем их соединений.