Смекни!
smekni.com

Электрические и магнитные методы контроля РЭСИ (стр. 2 из 3)

Метод служит для выявления дефектов типа тонких поверхностных и под­поверхностных нарушений сплошности: трещин, расслоений, непроваров сварных соединений и т. п.

Метод позволяет контролировать изделия любых размеров и форм если их магнитные свойства дают возможность намагничивания до степени, достаточ­ной для создания магнитного поля дефекта необходимого для притяжения частиц магнитного порошка.

Чувствительность метода определяется магнитными характеристиками ма­териала контролируемого изделия, его формой и размерами, чистотой обра­ботки поверхности, напряженностью намагничивающего поля, способом кон­троля, взаимным направлением намагничивающего поля дефекта, свойствами применяемого магнитного или магнитно- люминесцентного порошка спосо­бом нанесения суспензии (или сухого порошка), а также освещенностью ос­матриваемого участка изделия.

В зависимости от размеров выявляемых поверхностных дефектов устанавли­ваются три условных уровня чувствительности указанные в таблице 2

Таблица 2

Уровни чувствительности магнитопорошковых методов.

Условный уровень чувствительности Ширина выявляемого дефекта, мкм Минимальная протяженность вы­являемой части дефекта, мкм
А 2,5 Свыше 0,5
Б 10,0 Свыше 0,5
В 25,0 Свыше 0,5

Магнитопорошковый метод контроля предусматривает следующие техноло­гические операции:

- подготовку изделия к контролю;

- намагничивание изделия;

- нанесение на изделие магнитного порошка или суспензии;

- осмотр изделия;

- разбраковку;

- размагничивание.

Изделия, подаваемые на намагничивающие устройства, должны быть очи­щены от покрытий, мешающих их смачиванию или их намагничиванию (мас­ла, грязь, иногда изоляционные покрытия и т. п.).

В зависимости от магнитных свойств материала, размеров и формы кон­тролируемого изделия, а также оборудования, используемого для намагничи­вания, применяют два способа контроля:

- способ приложенного магнитного поля СПМП;

- способ остаточной намагниченности (СОН).

Контроль СПМП характеризуется образованием валика порошка над дефектом за время действия на контролируемое изделие внешнего магнитного поля. При контроле СПМП намагничивание должно начинаться раньше или одновременно с моментом прекращения полива суспензией или нанесения сухого порошка на контролируемое изделие. Окончание намагничивания должно происходить после прекращения стекания основной массы суспензии с контролируемого участка.

Во избежание перегрева изделия после прекращения нанесения суспензии при длительном времени стекания последней, намагничивающий ток может периодически выключаться. Время действия тока 0,1 - 0,5 с с перерывами между включениями 1 - 2 с.

Осмотр изделия производят по окончании стекания суспензии. В отдель­ных случаях, оговариваемых технической документацией, осмотр изделия мо­жет производиться во время действия намагничивающего тока (поля).

Контроль СОН заключается в предварительном намагничивании контроли­руемого изделия и последующем нанесении на него суспензии или сухого магнитного порошка. Промежуток времени между намагничиванием и ука­занной выше обработкой должен быть не менее 1 ч. При этом оседание по­рошка в зоне дефекта образуется в отсутствии внешнего намагничивающего поля. Наибольшая чувствительность СОН имеет место, когда величина оста­точной индукции в изделии соответствует предельному гистерезисному циклу.

При магнитопорошковом методе контроля применяют три вида намагничи­вания: циркулярное, продольное (полюсное) и комбинированное; Комбинированное намагничивание может быть выполнено только СПМП. Основные способы на­магничивания и схемы их осуществления приведены в табл. 3.


Таблица 3

Способы и схемы намагничивания изделий.

Вид намагничива­ния (по форме маг­нитного потока) Способ намагничивания Схема намагничивания
Пропосканием тока по всему изделию
Пропускнием тока по контролируемой части изделия
Циркулярное С помощью провода с током, помещаемого в отверстие изделия
Путем индуцирования тока в изделии
Продольное Постоянным магнитом
(полюсное) Электромагнитом
Продольное (полюсное) Намагничивающим соленоидом
Пропусканием через изделие электрическо­го и магнитного пото­ка от электромагнита
Пропусканием по из­делию двух (или бо­лее) независимых то­ков во взаимно пер­пендикулярных на­правлениях
Комбинированное Путем индуцирования тока в изделии и то­ком, проходящим по проводнику, поме­щенному в отверстии изделия
Пропусканием тока по изделию и при помощи соленоида

В зависимости от ориентации дефектов, подлежащих обнаружению, приме­няют намагничивание в одном, двух или в трех взаимно перпендикулярных на­правлениях (или применяют комбинированное намагничивание).

Нанесение магнитного порошка на контролируемое изделие может произво­диться двумя способами: сухим и мокрым. В первом случае для обнаружения дефектов применяют сухой магнитный порошок, во втором – магнитную сус­пензию (взвесь магнитного порошка в дисперсионной среде). В качестве дис­персионной среды могут применяться вода, масло, керосин, смесь масла с керо­сином и др.

Разбраковка изделий проводится путем визуального осмотра поверхности изделия на наличие отложений магнитного порошка в местах дефектов. При необходимости расшифровка результатов контроля может проводиться с приме­нением оптических средств, тип и увеличение которых устанавливаются техни­ческой документацией на контроль конкретных изделий.

2. Магнитографический метод.

Этот метод основан на регистрации магнитных полей рассеяния над дефектами с применением в качестве индикатора ферро­магнитной пленки. В этом методе контролируемый участок объекта намагничи­вают, затем плотно прижимают к нему магнитную ленту аналогичную лентам, применяемым для магнитной звуко- и видеозаписи. Намагниченность ферро­магнитных частиц ленты определяется напряженностью основного магнитного поля и магнитными полями рассеяния над дефектами. Информация о дефекте считывается при помощи магнитографического дефектоскопа, имеющего лен­топротяжное устройство, чувствительную головку типа магнитофонной и осциллографический индикатор. Для воспроизведения записи взаимно перемеща­ют ленту или головку с постоянной скоростью. Возникающий в головке элект­рический сигнал пропорционален величине остаточного магнитного потока от­печатков полей рассеяния дефектов, зафиксированных на ленте.

Отечественные серийные магнитографические дефектоскопы МД-9, МД-11, МКГ имеют электродвигатель, приводящий во вращение барабан с несколь­кими магнитными головками. Головки перемешаются поперек магнитной лен­ты. Электрический сигнал с головки усиливается и подается на электроннолуче­вую трубку. Горизонтальная развертка трубки синхронизирована с вращением магнитных .головок.

Чувствительность магнитографического метода сравнительно высока - на изделиях с ровной поверхностью выявляются дефекты глубиной 0,3 мм при шероховатости поверхности 0,15 мм. Преимущество данного метода - докумен­тальность контроля и возможность количественной оценки. Магнитографичес­кий метод дефектоскопии получил широкое распространение для контроля ка­чества сварного шва, соединений трубопроводов и листовых конструкций.

Магнитоферрозондовый метод. Этот метод основан на выявлении феррозон-довым преобразователем магнитных полей рассеяния над дефектами в намагни­ченном изделии и преобразовании их в электрические сигналы. Содержание метода устанавливается ГОСТ 21104-75.

Феррозонд представляет собой ферритовый или пермаллоевый сердечник длиной не более 2-6 мм с двумя обмотками, из которых первая - возбуждающая, питаемая переменным током от генератора, а вторая - измерительная, дающая информацию о наличии и изменениях внешних магнитных полей. Фер­розондовые преобразователи имеют очень высокую чувствительность (до 10-6 эВ), что позволяет обнаруживать мельчайшие дефекты, способные создать поле рассеяния. Обеспечив перемещение преобразователя по поверхности объекта, осуществляют автоматический или полуавтоматический контроль наличия де­фектов.