Смекни!
smekni.com

Разработка конструкции цифрового синтезатора частотно–модулированных сигналов (стр. 4 из 15)

Тк=Jк+Тс (3.27)

где Тс – температура окружающей среды;

16) определяется температура нагретой зоны:

Тз=Jз+Тс (3.28)


17) определяется температура поверхности элемента:

Тэл=Jэл+Тс(3.29)

18) находится средняя температура воздуха в блоке:

Тв=Jв+Тс(3.30)

19) рассчитывается температура окружающей среды:

Тэ-с=Jэ-с+Тс (3.31)

Расчет конструкции на виброзащищенность

Для того чтобы проверить насколько хорошо защищено проектируемое устройство от механических воздействий, необходимо провести расчет собственной частоты вибраций платы. В данном случае плата является единственной колебательной системой. Жесткость платы зависит от материала, формы, геометрических размеров и способа закрепления.

Печатная плата имеет прямоугольную форму следующих размеров:

axbxh=280 мм x 150 мм x 1.5 мм

При расчете собственной частоты вибрации печатной платы используют следующие допущения:

плата представляется в виде модели распределенными массами и упругими демпфирующими связями;

ЭРЭ на плате располагаются равномерно на ее поверхности;

плата с элементами принимается за тонкую пластину, так как b/h<0,1, толщина платы принимается постоянной, h = const;

материал платы однородный, идеально упругий, изотропный;

возникающие изгибные деформации малы по сравнению с толщиной платы;

при изгибе платы нейтральный слой не подвергается деформации растяжения (сжатия).

Для пластин с четырьмя точками крепления частота собственных колебаний платы, определяется по формуле:

, (3.11)

где a = 0,28 м. длинна платы;

b = 0,15 м. ширина платы;

цилиндрическая жесткость платы,
;

;

распределенная по площади масса платы и элементов,
.

Цилиндрическая жесткость платы определяется по формуле:

(3.12)

где

- модуль упругости материала платы;

- толщина платы;

- коэффициент Пуассона.

(3.13)

Распределенная по площади масса платы и элементов определяется из выражения:

, (3.14)

где

- удельная плотность материала платы;

- масса элементов, установленных на плате,
.

, (3.15)

где

- масса i - го элемента, установленного на плате,
;

n = 40 - количество элементов, установленных на плате.

Воспользовавшись справочными данными получим
mэ = 104,2´10 –3 кг. следовательно,

Подставляя найденные величины в формулу (4.2.1), определим минимальную частоту собственных колебаний платы. Она будет минимальной при

,
.

В результате механических воздействий печатная плата подвержена усталостному разрушению, в особенности при возникновении механического резонанса. Чаще всего усталостные отказы проявляются в виде обрыва проводников, разрушения паяных соединений, нарушения контактов в разъемах. Подобные разрушения можно предотвратить, если обеспечить выполнение условия

(3.16)

где

- минимальная частота собственных колебаний платы;

- ускорение свободного падения, g = 9,8м/c2;

- безразмерная постоянная, выбираемая в зависимости от частоты собственных колебаний и воздействующих ускорений.

- максимальные вибрационные перегрузки, выраженные в единицах g.

Следовательно,

¦min 85Гц

Значит, проектируемая плата будет иметь достаточную усталостную прочность при гармонических вибрациях.

Определим эффективность виброзащиты по формуле:

, (3.17)

где

- верхняя частота диапазона воздействующих частот, Гц;

- резонансная колебаний печатной платы, Гц.

Подставив значения, получим:

.

Таким образом, можно сказать, что спроектированное устройство на 44% защищено от вибрационных воздействий.

3.1 Разработка принципиальных схем синтезатора

Цифровой синтезатор частотно – модулированных сигналов позволяет формировать л.ч.м. – сигналы и предназначен для работы в составе л.ч.м. – ионозонда в качестве возбудителя передатчика.

На принципиальной схеме цифрового синтезатора частотно – модулированных сигналов наиболее полно изображены все электрические элементы и устройства, необходимые для осуществления и контроля в изделии заданных электрических процессов, все связи между ними, а также элементы подключения, которыми заканчиваются входные и выходные цепи.

Принципиальная схема цифрового синтезатора ч.м. – сигналов

Принципиальная схема цифрового сиртезатора приведена на схеме 003.Э3. В качестве опорного генератора использован стандарт частоты и времени Ч1 – 73, частота которого удваивается при помощи умножителя частоты; блок задержки выполнен на триггерах Шмитта DD1, ждущих мультивибраторах DD2 и логических элементах DD3; оба блока ПЗУ – DD4 – DD7; регистр памяти Рг1 объединен в одном корпусе с накопителем Н1 – DD10, DD11, а регистр памяти Рг2 с накопителем Н2 – DD8, DD9; цифроаналоговый преобразователь DD12 включает в свой состав также преобразователь кодов. Устройство работает следующим образом. Сигнал опорного генератора (Ч1 - 73) частотой 5 МГц поступает на удвоитель частоты, и на вход 1/DD1 подается сигнал с тактовой частотой fТ = 10 МГц, из которого формируются импульсы формы “меандр”, разнесенные по времени на величину задержки переключения триггеров Шмитта: CLK1, CLK2, CLK3, CLK4, которые подключены к входам синхронизации 2/DD8 – DD11.

По положительному фронту импульса запуска fз запускаются ждущие мультивибраторы, собранные на микросхеме DD2, которые формируют импульсы отрицательной полярности длительностью t1 = 0.333 мкс и t2 = 0.1 мкс. Эти импульсы служат для записи кода начальной частоты во входной регистр первого накопителя. Из управляющей э.в.м. адрес кода начальной частоты Сi поступает на адресные входы 8 – 1, 23, 22, 19/DD4 – DD7. С приходом первого тактового импульса 32 – разрядный код Ci записывается в регистр первого накопителя (DD8, DD9), по второму тактовому импульсу происходит установка в “0” его входного регистра и сумма S = Ci + 0 переписывается в регистр второго накопителя (DD10, DD11). После завершения действия импульсов запуска с каждым последующим тактовым импульсом будет происходить изменение результата суммирования в первом накопителе DD8, DD9, который является счетчиком частоты по формуле:

A = Ci + T/Dk

где А – результат суммирования, Ci – код начальной частоты, Т – номер тактового импульса, Dk – код коэффициента деления счетчика.

В приведенной схеме отсутствуют блок ПЗУ1 и счетчик с предварительной установкой Сч, поэтому Dk = 1 и скорость изменения частоты будет постоянной. Во втором накопителе DD10, DD11 выходной код изменяется по формуле:

B = AT = CiT + T*2/ Dk.

Старший разряд 18/DD10 является знаковым и управляется инверсией (L, H) ЦАП – 20, 21/DD12. Если SSGN = 1 – обратный код суммы. На выходе ЦАП формируется аналоговый сигнал с максимальной частотой fc до 2.5 МГц.


Принципиальная схема цифрового синтезатора ч.м. – сигналов с быстрой перестройкой рабочей частоты

Принципиальная схема цифрового синтезатора ч.м. – сигналов с быстрой перестройкой рабочей частоты показана на схеме 004.Э3. В качестве опорного генератора исспользуется сигнал стандарта частоты и времени Ч1 – 73 частотой 5 МГц. Блок задержки содержит триггеры Шмитта DD1, ждущие мультивибраторы DD2, логические элементы 2И – НЕ DD3; делитель с переменным коэффициентом деления DD4 служит для задания скорости изменения частоты синтезатора; блок ПЗУ рализован на DD5, DD6; счетчик частоты (синхронный) Сч – DD7 – DD10. Умножитель кодов объединен с накопителем – DD11; преобразователь кодов – DD12 – DD14; цифроаналоговый преобразователь - DD15. Микросхема К1518ВЖ1 представляет собой умножитель аккумулятор, т.е. умножитель кодов со встроенным 35 – разрядным накопителем произведений. Если на вход 52 /DD11 подать логическую “1”, то будет происходить накопление результатов произведения по формуле: