Смекни!
smekni.com

Інформаційно-вимірювальна система температури (стр. 2 из 4)

В умовах тривалої експлуатації при високих температурах і агресивній дії середовищ з'являється нестабільність градуювальної характеристики, яка є наслідком ряду причин: забруднення матеріалів термоелектродів домішками із захисних чохлів, керамічних ізоляторів і атмосфери печі; випаровування одного з компонентів сплаву; взаємної дифузії через спай. Величина відхилення може бути значною і різко збільшується із зростанням температури і тривалістю експлуатації. Вказані обставини необхідно враховувати при оцінці точності вимірювання температури у виробничих умовах.

Перевірка ТТ зводиться до визначення температурної залежності термо-ЕРС і порівнянні одержаного градуювання із стандартними значеннями.

1.5 Електричні термометри опору

У металургійній практиці для вимірювання температур до 6500С застосовуються термометри опору (ТО), принцип дії яких заснований на використанні залежності електричного опору речовини від температури. Знаючи дану залежність, по зміні величини опору термометра судять про температуру середовища, в яке він занурений. Вихідним параметром пристрою є електрична величина, яка може бути виміряна з досить високою точністю (до 0,020С), передана на великі відстані і безпосередньо використана в системах автоматичного контролю і регулювання.

Як матеріали для виготовлення чутливих елементів ТО використовуються чисті метали: платина, мідь, нікель, залізо і напівпровідники.

Зміна електроопору даного матеріалу при зміні температури характеризується температурним коефіцієнтом опору

, який обчислюється за формулою

, (1.3)

де t - температура матеріалу, 0С; R0 і Rt - електроопір відповідно при 0 0С і температурі t, Ом.

Опір напівпровідників із збільшенням температури різко зменшується, тобто вони мають негативний температурний коефіцієнт опору практично на порядок більше, ніж у металів. Напівпровідникові термометри опору (ТОНП) в основному застосовуються для вимірювання низьких температур (1,5 - 400 К).

Перевагами ТОНП є невеликі габарити, мала інерційність, високий коефіцієнт . Проте вони мають істотні недоліки:

- нелінійний характер залежності опору від температури;

- відсутність відтворюваності складу і градуювальної характеристики, що виключає взаємозамінюваність окремих ТО даного типу. Це приводить до випуску ТОНП з індивідуальним градуюванням.

Значно рідше в металургійній практиці зустрічаються напівпровідникові термометри опору (ТОНП) для вимірювання температури (-90)…(+180)0С. Їх застосовують в термореле, низькотемпературних регуляторах, що забезпечують високоточну стабілізацію сенсорних елементів газоаналізаторів, хроматографов, корпусів пірометрів, електродів термоелектричних установок для експрес-аналізу складу металу і т.п.

1.6 Безконтактне вимірювання температури

Про температуру нагрітого тіла можна говорити на підставі вимірювання параметрів його теплового випромінювання, що являють собою електромагнітні хвилі різної довжини. Чим вища температура тіла, тим більше енергії воно випромінює.

Термометри, дія яких заснована на вимірюванні теплового випромінювання, називають пірометрами. Вони дозволяють контролювати температуру від 100 до 6000 0С і вище. Однією з головних переваг даних пристроїв є відсутність впливу вимірювача на температурне поле нагрітого тіла, оскільки в процесі вимірювання вони не вступають в безпосередній контакт один з одним. Тому дані методи одержали назву безконтактних.

На підставі законів випромінювання розроблені пірометри наступних типів:

- пірометр сумарного випромінювання (ПСВп) - вимірюється повна енергія випромінювання;

- пірометр часткового випромінювання (ПЧВ) - вимірюється енергія в обмеженій фільтром (або приймачем) ділянці спектру;

- пірометри спектрального відношення (ПСВ) - вимірюється відношення енергії фіксованих ділянок спектру.

Залежно від типу пірометра розрізняються радіаційна, колірна температури та температура яскравості.

Радіаційною температурою реального тіла Тр називають температуру, при якій повна потужність АЧТ рівна повній енергії випромінювання даного тіла при дійсній температурі Тд.

Температурою яскравості реального тіла Тя, називають температуру, при якій щільність потоку спектрального випромінювання АЧТ рівна щільності потоку спектрального випромінювання реального тіла для тієї ж довжини хвилі (або вузького інтервалу спектру) при дійсній температурі Тд.

Колірною температурою реального тіла Тц називають температуру, при якій відношення щільності потоків випромінювання АЧТ для двох довжин хвиль

і
рівні відношенню щільності потоків випромінювань реального тіла для тих же довжин хвиль при дійсній температурі Тд. Принцип дії оптичних пірометрів заснований на використанні залежності щільності потоку монохроматичного випромінювання від температури.

У фотоелектричних пірометрах з межами вимірювання від 500 до
1100 0С застосовують киснево-цезієвий фотоелемент, а в приладах з шкалою 800 - 4000 0С вакуумний сурм'яно-цезієвий. Поєднання останнього з червоним світлофільтром забезпечує отримання ефективної довжини хвилі пірометра 0,65±0,01 мкм, що приводить до збігу показів фотоелектричного пірометра з показами візуального оптичного пірометра.

1.7 Цифрові вимірювачі температури

Загальні особливості побудови цифрових вимірювачів температури (ЦВТ) зв`язані з низьким рівнем сигналів первинних вимірювальних перетворювачів, високим рівнем завад нормального та спільного видів (як правило, співвимірним з корисним сигналом), необхідністю лінеаризації загальної функції перетворення, забезпеченням високої часової стабільності та малих змін їх показів у широкому діапазоні зміни температури довкілля. Спеціальні вимоги випливають з особливостей використання первинних вимірювальних перетворювачів: необхідність компенсації впливу зміни температури вільних кінців термоелектричних перетворювачів, суттєве зменшення похибок від перегріву терморезистивних перетворювачів вимірювальним струмом, забезпечення інваріантності результату вимірювання до значення вимірювального струму, а також опорів з`єднувальних ліній. Для врахування вказаних особливостей ЦВТ виконуються з автоматичною корекцією адитивної складової похибки в цифровій частині приладу ата цифровою лінеаризацією загальної функції перетворення. Значного послаблення завад досягають використанням методу АЦП з ваговим двотактним інтегруванням та гальванічним розділенням аналогової та цифрової частини приладів.

В ЦВТ з термоелектричними перетворювачами (рисунок 4) використовуються аналогова схема компенсації впливу зміни температури вільних кінців, а корекція адитивної похибки здійснюється за методом комутаційного інвертування.


Рисунок 4 – Структурна схема ЦВТ з термоелектричними перетворювачами

Аналогова частина ЦВТ містить перемикач полярності П, масштабний підсилювач МП, перетворювач напруги в інтервал часу ПНЧ, блок опорної напруги Е0 та блок керування аналоговою частиною БКА. Ця частина екранована та гальванічно розділена з його цифровою частиною за допомогою блока гальванічного розділення БГР. Цифровачастина складається з блоку керування БК, боку корекції адитивної похибки БКА, блоку цифрової лінеаризації БЦЛ та блоку відображення інформації БВІ.

Код результату вимірювання

і пропорційний йому показ отримується за два цикли перетворення при протилежних полярностях вхідної напруги
, яка інвертується перемикачем полярності П,

, (1.4)

де Т - тривалість часу інтегрування вхідної напруги;

- опорна частота;
- коефіцієнт передачі масштабного підсилювача МП; Е0 – опорна напруга АЦП;
- коефіцієнт перетворення блока цмфрової лінеаризації.


Оскільки скореговане за методом комутаційного інвертування значення адитивної похибки є нехтовно малим (менше ±0,5 мкВ і не перевищує половини одиниці молодшого розряду), то стабільність таких ЦВТ визначається тільки стабільністю їх масштабних елементів. Для сучасної елементної бази нормований час безперервної роботи приладів без підстроювання становить 5000 год (1 календарний рік) у важких промислових умовах.

Рисунок 5 – Структурна схема ЦВТ з терморезистивними перетворювачами

ЦВТ з терморезистивними перетворювачами відрізняються тільки наявністю деяких блоків в аналоговій частині (рисунок 5). В аналоговій частині є такі відсінні блоки: перетворювач напруга-струм ПНС, перетворювач струм-напруга ПСН, суматор СМ, масштабний резистор

. Терморезистивні перетворювачі можуть під`єднуватись до ЦВТ як чотирипровідною лінією до струмових С1, С2 та потенціальних П1, П2 входів (ключ S - в положенні 1), так і трипровідною (ключ S – в положенні 2). Корекція адитивной похибки здійснюється за методом модуляції вимірювального струму, значення яких встановлюється перетворювачем напруга-струм ПНС.