Мир Знаний

Расчет управляемого выпрямителя и СИФУ (стр. 2 из 3)

Максимальный ток через диод

1.3 Выбор элементов управляемого выпрямителя

Тиристоры выбираем по

:

тиристор Т222-20-12 и типовой охладитель М-6А.

Для нулевого вентиля:

- диод ВЛ50 с типовым охладителем М-6А.

1.4 Расчет регулировочной характеристики управляемого выпрямителя

Общая расчетная формула для всего семейства нагрузочных характеристик:


Рисунок 1.2 — Регулировочная характеристика выпрямителя


1.5 Выбор защиты тиристоров от перегрузок по току и напряжению

Для защиты тиристоров от перегрузок применяем плавкий быстродействующий предохранитель. Достаточно поставить предохранитель в цепи нагрузки.

Ток плавкой вставки:

Выбираем плавкую вставку ПНБ-5-380/100.

Для ослабления перенапряжения используем

- цепочки, которые включаются параллельно тиристору. Такая цепочка совместно с индуктивностями цепи коммутации образует последовательный колебательный контур. Конденсатор ограничивает перенапряжения, а резистор — ток разряда этого конденсатора при отпирании и предотвращает колебания в последовательном контуре. Параметры цепочек определим по следующим соотношениям:

Величина напряжения на конденсаторе

ток разряда контура

Rдv1 – динамическое сопротивление открытого тиристора.

Мощность рассеяния на резисторе

По справочнику выбираем конденсаторы C2, С3 – MБM-5.6мкФ-320В

, резисторы R2, R3 – ПЭВ-100-100-

Рисунок 1.3 — Схема управляемого выпрямителя с защитой


2. ПРОЕКТИРОВАНИЕ СИФУ

2.1 Расчет параметров пусковых импульсов

Определяем требуемую длительность импульса управления

, исходя из знания угла коммутации
, определенного при расчете силовых схем:

Принималось во внимание, что 1 электрический градус примерно равен 56мкс.

Для тиристоров Т222-20-12 определяем токи и напряжения управления:

Напряжение управления:

.

2.2 Расчет цепи управления тиристорами


Рисунок 2.1 - Схема входной цепи тиристора

Находим внутренне сопротивление управляющего перехода тиристора

’:

Находим величину, сопротивления:

Определяем мощность рассеяния на резисторе Ro и выбираем по каталогу:

Резистор МЛТ-0.7-33

Определим выносную мощность импульсного усилителя:

Диод выбираем по току управления и обратному напряжению – в данном случае напряжению управления – 2Д201Б с допустимым прямым током 5(А) и обратным напряжением 100(В).

2.3 Расчет элементов триггера Шмидта


Рисунок 2.2 - Триггер Шмидта

Примем

тогда амплитуда выходных импульсов
Период следования импульсов запуска
Минимальная длительность запускающих импульсов

Максимальная длительность выходного импульса порогового устройства

Выбираем транзисторы VT4 и VT5 из условия

которому удовлетворяют транзисторы типа КТ817,с параметрами:

Ток насыщения

Резистор

мощность рассеяния на резисторе R5
Выбираем резистор МЛТ-0,8-510

Величина R4:

Мощность рассеяния на резисторе R4:

Принимаем резистор ПЭВ-2.4Вт -1.5кОм

Принимаем резистор МЛТ-0.25-1.2 кОм

.

Находим сопротивление R3:

Мощность на резисторе

Выбираем сопротивление типа МЛТ-0.62-360

.

Диод Vd8 выбираем по току I=0,04(A); Uобр=20(В) Выбираем диод КД103А


2.4 Расчет стабилизатора напряжения, выпрямителей

Рисунок 2.3 - Стабилизатор напряжения, выпрямитель с нулевым выводом

2.4.1 Расчет источника питания

Находим

По этим параметрам выбираем диоды типа VD5, VD6 - КД105А

Сопротивление резистора R2 определяется в результате наладки.

Суммарный ток нагрузки источника питания – 0,2(А).

Определим минимально допустимое входное напряжение стабилизатора:

Номинальное и максимальное значения напряжения на входе стабилизатора при колебании сети на +10%:

максимальное падение на регулирующем транзисторе:


Максимальная мощность рассеяния на транзисторе VT2:

Выбираем регулирующий транзистор П214 с параметрами:

Выбираем стабилитрон 2C220Ж.

Определяем величину сопротивления R1

Определяем мощность рассеяния:

Выбираем сопротивление типа МЛТ-0,15Вт-680Ом

Величина выходной емкости:

Принимаем С2 К5016-20В-150 мкФ

2.4.2 Расчет выпрямителя по схеме с нулевым выводом

Величина выпрямленного напряжения