Смекни!
smekni.com

Розрахунок схеми підсилювача з двополярним джерелом електроживлення (стр. 4 из 7)

Функцію передкінцевого каскаду на схемі, наведеної на рисунку 2 виконує транзистор УТ1.

Амплітуда сигналу у попередніх каскадахзвичайно мала, тому нелінійні спотворення переважно невеликі. Найбільше поширення в попередніх каскадах одержала схема включення транзистора з загальним емітером, яка дозволяє отримати найбільше підсилення і має достатньо великий вхідний опір. Цим вимогам відповідає резистивний каскад, який може забезпечити рівномірне підсилення в широкій смузі частот при малих спотвореннях і не схильний наводкам від зовнішніх магнітних полів.

З можливих способів стабілізації режиму в попередніх каскадах найбільше поширення одержала емітерна стабілізація як найбільш ефективна і проста за схемою. При використанні безпосередніх зв'язків поряд з емітерною стабілізацією вводиться негативний загальний зворотний зв'язок за постійним струмом. Для підвищення лінійності підсилювача, одержання великого вхідного опору, розв'язання за постійним струмом входу підсилювача та кола зворотного зв'язку, більш високої температурної стабільності, поліпшення динамічних характеристик у ролі вхідного каскаду застосовують диференційний каскад (рисунок 3).

Рисунок 2.2 – Схема кінцевого каскаду, зібраного на складених комплементарних транзисторах.


Рисунок 2.3 – Принципова схема диференційного каскаду

Одним із основних напрямів створення високоякісних підсилювачів є застосування зворотного зв'язку. В підсилювачах застосовується зворотний негативний зв'язок за змінним та постійним струмом. Застосування НЗЗ за струмом дозволяє зменшити лінійні і нелінійні спотворення, які вносяться підсилювачем, знизити вихідний опір підсилювача потужності.

Негативний зворотний зв'язок за постійним струмом стабілізує напругу спокою транзисторів кінцевого каскаду. Застосування грубого НЗЗ (більш 40-50 дБ) не рекомендується, тому що це приводить до виникнення динамічних спотворень. Якщо потрібно одержати коефіцієнт загальних гармонійних спотворень менше 0,1-0,5 %, в підсилювач вводиться НЗЗ більше 50 дБ.

Для підвищення амплітуди вихідної напруги належить застосовувати вихідні транзистори з можливо меншим значенням опору насичення, а попередній каскад будувати за схемою, яка забезпечує найбільшу амплітуду сигналу на базах транзисторів фазоінвертерного каскаду.

Для цього в схемі попереднього каскаду підсилювача повинна обов'язково бути "Вольтдобавка",а опір в емітерному колі транзистора повинен бути мінімальним чи зовсім відсутнім.

В той же час повинні бути вжити заходи щодо жорсткої стабілізації постійної напруги в точці з'єднання вихідних транзисторів при зміні температури.

Для забезпечення добрих демпфувальних властивостей підсилювача, вихідний опір транзисторів кінцевого каскаду повинен бути принаймні в 3-5 разів менше опору навантаження. Подальше зменшення вихідного опору не має смислу, тому що в коло демпфувального струму, що виникло за рахунок е.р.с. котушки гучномовця, крім вихідного опору входить опір навантаження.

"Вольтдобавка" звичайно вводиться за допомогою позитивного зворотного зв'язку (ПЗЗ), напруга якого з виходу підсилювача подається на відвід опору навантаження передкінцевого каскаду. ПЗЗ приводить до збільшення опору підсилювача. Збільшення напруги на передкінцевому каскаді приводить до зменшення нелінійних спотворень.

В безтрансформаторних вихідних каскадах найбільш часто застосовують режими В або АВ. При використовуванні режиму класу В в підсилювачах на ділянці малих струмів виникають перехідні спотворення, які виявляються у вигляді відсічки струму. Кількісно перехідні спотворення оцінюються часом переключення підсилюючих елементів. Зменшення перехідних спотворень досягається застосуванням режиму класу АВ, при якому на вхід підсилюючого елемента подається відповідна напруга зміщення. Напруга зміщеная створюється за допомогою діодного кола чи за допомогою транзисторної схеми.

Режим роботи транзисторів кінцевого каскаду визначає струм спокою, який протікає через транзистор при відсутності керуючого сигналу. Зміна температурних умов приводить до зміни струму спокою і, відповідно, режиму роботи транзисторів кінцевого каскаду, що приводить до збільшення нелінійних перехідних спотворень.

Найбільш часто в підсилювачах використовується діодна стабілізація струму, заснована на температурній залежності вольтамперних характеристик діоду. Напруга зміщення забезпечується характеристиками діоду. Рекомендується застосовувати кількість діодів, яка дорівнює кількості транзисторів в кінцевому каскаді. Але при такому способі складно забезпечити з достатньою точністю потрібне зміщення. Для більшої точності підстроювання напруги зміщення послідовно з діодами включається опір.

Так як вхідний опір достатньо великий в якості вхідного каскаду була обрана схема диференційного каскаду, а в якості кінцевого каскаду з урахуванням заданої потужності була обрана схема кінцевого каскаду, зібраного на комплементарних транзисторах.


3.ЕЛЕКТРИЧНИЙ РОЗРАХУНОК

Таблиця 3.1 Вхідні дані.

Номер варіанту Тема курсовогопроекту Номінальна вихідна потужність Опір навантаження Джерело сигналу Діапазон відтворених частот Допустимівідхилення частотної характеристики Коефіціент загальних гармонічних спотворень Діапазон робочих температур
PH Вт RHОм RдкOм UдВ FH Гц Fb кГц MH дБ Hb дБ Kг% Tmin Tmax ºC
8 Розрахунок схеми підсилювача, кінцевий каскад якого на зібраних комплементарних парах транзистора, з двополярним джерелом електроживлення 25 14 240 0,08 38 8 1,8 1,6 0,8 10-50

3.1 Розрахунок напруги джерела електроживлення

У безтрансформаторних двотактних каскадів при роботі в режимі В опір навантаження плеча К, для якого будують навантажувальну пряму на сімействі вихідних характеристик транзистора, дорівнює опору навантаження RH,тому що плечі тут працюють по черзі.

Необхідну для найменшої витрати енергії напругу електроживлення, при заданому опорі навантаження каскаду RH,визначаємо за формулою:

(3.1)

де Rн – опір навантаження , Ом;

Pн- вихідна потужність на навантаженні, Вт;

Uзал – залишкова напруга на транзисторі; приймаємо Uзал = 1,5 – 3,5 В .

В

Вибираємо стандартне значення напруги електроживлення за ГОСТ 18275-72 „Апаратура радіоелектронна. Номінальні значення напруги та сили струмів живлення" :

В

3.2 Вибір транзисторів кінцевого каскаду

Визначаємо граничні параметри транзисторів , які вибираємо за такими формулами:

- максимальна напруга колектор-емітер, В

В

- максимальний струм колектора, А

А

- максимальна розсіювана потужність, Вт

підсилювач каскад напруга стабілізація транзистор


Вт

- гранична частота коефіцієнта передачі струму, кГц

кГц .

За граничними розрахунковими параметрами вибираємо необхідний тип транзисторів VT6,VT7.Дані заносимо до таблиці 3.2 .

Таблиця 3.2 Параметри транзисторів кінцевого каскаду

Параметри Inkmax UnKEmax Pkmax ,Вт fnh21Emax,кГц Тип h21E
Розрахунковіграничні параметри 2,4 62,38 9,24 32 - -
Параметри вибраного транзистора 10 80 1(60) 3МГц КТ816Г 12-275
10 80 1(60) 3МГц КТ817Г 12-275

3.3 Розрахунок колекторного кола кінцевого каскаду

З метою зменшення розрахункової частини проекту і в зв'язку з незначними відхиленнями верхнього та нижнього плеч підсилювача потужності розрахунок проводять для одного, плеча. В якому вихідний транзистор має менше значення h21Emax.

Визначаємо опірнегативного зворотного зв'язкуза формулою:

де Rзз - опір зворотного зв'язку;

ηзз - ККД вихідного кола, що показує втрати корисної потужності на опорах емітерного кола; приймаємо ηзз=0,9. Вибираємо стандартне значення резисторів за стандартом. Для визначення амплітудних значень струму та напруги необхідно побудувати вихідну навантажувальну характеристику.

Для побудови навантажувальної характеристики слід визначити координати двох точок (а, в), використовуючи рівняння динаміки