Мир Знаний

Устойчивость линейной системы авторегулирования (стр. 2 из 5)

На практике удобнее пользоваться не годографом частотной характеристики, а амплитудно-частотной и фазочастотной характеристиками. И еще более удобно использовать логарифмические АЧХ и ФЧХ, т.е. ЛАХ и ЛФХ. Критерий Найквиста в этом случае формулируется так: замкнутая линейная система устойчива при устойчивой разомкнутой, если в области частот, где ЛАХ разомкнутой системы положительна, ЛФХ разомкнутой системы или не пересекает значения -p, или пересекает его сверху вниз и снизу вверх одинаковое количество раз. При монотонной ЛФХ разомкнутой системы устойчивость можно определить, сравнивая две характерные частоты: частоту среза wср, на которой ЛАХ пересекает ось частот, и критическую частоту wкр, на которой ЛФХ пересекает значение -p. Для устойчивой системы wкр>wср. Запас устойчивости по усилению DLопределяется на критической частоте как расстояние от ЛАХ до оси частот, а запас устойчивости по фазе – на частоте среза как расстояние от -p до ЛФХ (рис.5).

Рис. 5

Логарифмические частотные характеристики позволяют легко и наглядно исследовать влияние параметров системы на ее устойчивость. Рассмотрим это на примере системы с передаточной функцией (3).

На рис. 6 изображены ЛАХ и ЛФХ разомкнутой системы для следующих значений постоянных времени: Т1 = 10-1 с, Т2 = 10-2 с, Т3 = =10-3 с и различных значений коэффициента передачи К = 10; 100; 103. При К = 10 замкнутая система устойчива. Запас устойчивости по фазе: 45 град, по усилению: 20 дБ. При К= 100 система находится на грани устойчивости и при К= 1000 неустойчива.

На рис.7 изображены логарифмические характеристики разомкнутой системы при К = 100, Т2 = 10-2 с, Т3 = 10-3 с и различных значений Т1: 1 с; 0,1 с и 0,01 с. Видно, что увеличение постоянной времени Т1 делает систему устойчивой и чем больше Т1, тем больше запасы устойчивости. Уменьшение Т1 приведет к неустойчивости системы. Наиболее неблагоприятной будет ситуация, когда все постоянные времени максимально близки друг к другу, т.е. при Т1 = (Т2 + Т3) ¤ 2. При дальнейшем уменьше- нии Т1 ЛФХ приподнимается в области частот, близких к частоте среза, и склонность системы к неустойчивости будет уменьшаться. При Т1 = 0 ЛФХ не будет пересекать значения -p, и система будет устойчивой при любом коэффициенте передачи.

Рис. 6 Рис. 7

Схема моделирования показана на рис. 8.