Смекни!
smekni.com

Импульсные и цифровые системы авторегулирования (стр. 2 из 3)

Изображение переходной характеристики:

.

По таблицам Z-преобразования:

h[n,e] = 1 – (1 - Kt)n + 1.

Переходная характеристика h[n,e] будет монотонной при 0 < Kt < 1 и колебательной при 1 < Kt < 2. Так как h[n,e] не зависит от e, то в интервале между моментами квантования переходная характеристика остается постоянной. На рис. 7,а приведена переходная характеристика для Кt = 0,5. При точном учете характера процесса в течение длительности импульса t переходная характеристика была бы такой, как показано на рис. 7,б. Значения этих переходных характеристик слева от момента дискретизации совпадают:

h[n] = 1 – (1 - Kt)n (19)

Эти значения на переходных характеристиках отмечены точками.

Рис. 7

Если вместе с задающим воздействием поступает и возмущающее воздействие, представляющее собой стационарный случайный процесс, то регулирование будет происходить со случайной ошибкой. Отношение дисперсии ошибки s2ош к дисперсии возмущающего воздействия s2воз при условии, что значения возмущающего воздействия, отстоящие на интервал дискретизации, некоррелированы, определяется выражением:

,

где g[n] – импульсная характеристика замкнутой системы.

Так как импульсная характеристика является первой разностью переходной характеристики, то

g[n] = h[n+1] – h[n] = 1 – (1 - Kt)n+1 – 1 + (1 - Kt)n = Kt(1 - Kt)n.

Тогда:

.

По формуле для суммы членов геометрической прогрессии:

. (20)

Исследование импульсной системы проводится на модели, представленной на рис. 8.

Рис. 8

В верхней части модели собрана вспомогательная схема, формирующая очень короткие импульсы, которые с выхода блока CrossDetect подаются на схему Semple-Holde (S&H – слежение – запоминание), и импульсы длительностью t, которые подаются на импульсный модулятор. Длительность этих импульсов равна времени задержки блока задержки. Для сравнения процессов в импульсной и непрерывной системах собрана модель непрерывной системы с одним интегратором.

Импульсная модуляция производится блоком перемножения, на один из входов которого подается модулируемый процесс, а на второй – импульс единичной амплитуды. Для задания типа АИМ используется блок S&H. Выходной процесс этого блока совпадает с входным при управляющем сигнале <1, а при управляющем сигнале ³1 остается постоянным и равным значению входного процесса в момент подачи этого сигнала. При подаче на управляющий вход коротких импульсов с блока CrossDetect блок S&H осуществляет операцию «выборка-хранение».

2. Цифровые системы авторегулирования. Влияние квантования по уровню на процессы в САР

В цифровых САР обработка информации производится в цифровой форме. Как правило, цифровые САР содержат и аналоговые устройства – объекты регулирования (ОР) - генераторы, двигатели и др., измерительные устройства (ИзмУ) - дискриминаторы. Структура такой системы приведена на рис. 9.

Рис. 9

Все вычисления производятся цифровым управляющим устройством ЦУУ. АЦП и ЦАП могут быть как самостоятельными устройствами, так и частью измерительного устройства (цифровые дискриминаторы) или объекта регулирования (ОР с цифровым управлением). Операции аналого-цифрового и цифро-аналогового преобразования являются нелинейными. В АЦП производится замена процесса, который может принимать любые значения, процессом, принимающим конечное число значений, а в ЦАП производится округление числа, так как разрядность ЦУУ, как правило, больше разрядности ЦАП.

Преобразование непрерывной величины в квантованную с наименьшей ошибкой осуществляется в устройствах квантования с двумя типами характеристик. Первая характеристика (рис. 10,а) имеет в окрестности нуля зону нечувствительности, а вторая (рис. 10,б) – релейную характеристику. Для обеих характеристик отклонение квантуемого процесса от квантованного не превышает половины шага квантования h. Характеристика стандартного АЦП приведена на рис. 10,в. Для нее максимальное отклонение входного и выходного процессов равно шагу квантования. Стандартный АЦП описывается уравнением: V = hE{U/h}. Здесь Е{a} означает целую часть числа a. Причем под целой частью следует понимать ближайшее целое число, меньшее a. Например, Е{0,2} = 0, а Е{-0,2} = -1. Заметим, что для формирования характеристики рис. 10,а нужно к входному процессу стандартного АЦП добавить h/2, а для формирования характеристики рис. 10,б – добавить h/2 к выходному процессу.

Рис. 10

Для исследования влияния квантования по уровню на процессы в системе авторегулирования обратимся к простейшей модели цифровой системы (рис. 11).


Рис. 11

В цепи обратной связи введена задержка на интервал дискретизации, так как вычисленное в данном интервале значение выходного процесса используется для регулирования только в следующем интервале. Элементы модели цифровой системы описываются следующими уравнениями:

вычитающее устройство:

u[n] = x[n] – y[n – 1], (21)

квантователь с характеристикой рис. 10,а:

v[n] = hE{u[n]/h + 0,5}, (22)

квантователь с характеристикой рис. 10,б:

v[n] = h(E{u[n]/h} + 0,5) (23)

и интегратор:

y[n] = y[n – 1] + Kv[n]. (24)

Найдем переходную характеристику системы, решая эти уравнения методом шагов для x[n] = 1[n] при нулевых начальных условиях. Примем следующие значения параметров: h = 0,5 и К = 0,4. Система с квантователем, имеющим зону нечувствительности, описывается уравнениями: (21), (22), (24). Решение запишем в виде таблицы.

n Нач.усл 0 1 2 3 4
x[n] 0 1 1 1 1 1
u[n] 0 1 0,6 0,4 0,2 0,2
v[n] 0 1 0,5 0,5 0 0
y[n] 0 0,4 0,6 0,8 0,8 0,8

Так как начальные условия нулевые, то при n = -1 все процессы равны нулю. Заполняем строку x[n] = 1 при п ³ 0. По уравнению (21) находим: u[0] = x[0] – y[-1] = 1. По уравнению (22): v[0] = 0,5E{u[0]/0,5 + + 0,5} = 0,5E{1/0,5 + 0,5} = 1. По уравнению (24): y[0] = y[-1] + 0,4v[0] = = 0,4*1 = 0,4. Далее по уравнению (21) находим u[1] и т.д.

Аналогично находим переходную характеристику системы с квантователем, имеющим релейную характеристику в окрестности нуля. Результаты расчета тоже представлены в таблице.

n Нач.усл. 0 1 2 3 4 5 6
x[n] 0 1 1 1 1 1 1 1
u[n] 0 1 0,5 0,2 0,1 0 -0,1 0
v[n] 0 1,25 0,75 0,25 0,25 0,25 -0,25 0,25
y[n] 0 0,5 0,8 0,9 1,0 1,1 1,0 1,1

На рис.12 показаны эти переходные характеристики. Там же для сравнения изображена переходная характеристика для дискретной системы, не содержащей квантователя, которая рассчитана по формуле h[n] = 1 – (1 – K)n + 1, полученной в предыдущей лабораторной работе. Видим, что в дискретной системе ошибка в установившемся режиме стремится к нулю. В цифровой системе она принципиально не может быть равной нулю и будет либо постоянной, либо знакопеременной. Зона нечувствительности в характеристике квантователя приводит к появлению постоянной ошибки, а релейная зависимость – к появлению периодических колебаний в установившемся режиме. Величина этих ошибок не превышает половины шага квантования.

Рис. 12

Такие же ошибки возникают и при любых других воздействиях. В данной лабораторной работе на модели исследуются процессы в системе при линейно изменяющемся воздействии. В принципе, эти процессы тоже можно рассчитать методом шагов. Мы не будем этого делать и найдем только скоростную ошибку в дискретной системе, чтобы в дальнейшем сравнивать с ней величину шага квантования. Передаточная функция разомкнутой системы:

Кр(z) = =Kинт(z)z-1

.

Тогда

.

Коэффициенты ошибок:


S0 = = Kош(z = 1) = 0 и

.

Скоростная ошибка dск = Dx/K, где Dx – разность входного процесса, то есть приращение входного процесса за интервал дискретизации.

Отмеченная разница в переходных характеристиках существенна только при большом шаге квантования. При уменьшении шага квантования переходные характеристики сближаются. К тому же характеристика квантователя может перемещаться по обеим осям из-за помех, возникающих до и после квантователя.

Рис. 13

При малом шаге квантования и произвольном входном воздействии эти режимы могут переходить друг в друга и разница в процессах при различных характеристиках квантователя становится мало ощутимой. В выходном процессе будет присутствовать случайная составляющая, обусловленная процессом квантования. Как уже отмечалось, квантование по уровню является нелинейной операцией. Выходной процесс квантователя uкв[n], как видно из рис. 13, можно представить в виде суммы квантуемого процесса u[n] и так называемого шума квантования hкв[n], а сам квантователь – в виде параллельного соединения линейного устройства с коэффициентом передачи, равным 1 и нелинейного устройства с характеристикой hкв =F(u) (см. рис. 14). Эту характеристику можно получить как разность значений выходного и входного процессов квантователя (рис. 15).