Мир Знаний

Розрахунок керованого випрямляча та системи імпульсно-фазового керування (стр. 3 из 5)

де

– динамічний опір відкритого тиристора.

З джерела [2] за обчисленими значеннями обираємо конденсатори C4-C9 типу МБГО-0,0025 мкФ±10% на 127 (В), резистори R4-R9 типу ПЭВ-20-620 Ом±10%.


Рисунок 1.4 – Схема захисту вентильних блоків перетворювача від перевантажень за струмом та напругою


2 ПРОЕКТУВАННЯ СИСТЕМИ ІМПУЛЬСНО-ФАЗОВОГО КЕРУВАННЯ

2.1 Розрахунок параметрів пускових імпульсів

Визначаємо потрібну тривалість імпульсу керування

. У попередньому розрахунку був визначений кут комутації вентилів
. Тривалість імпульсу керування обираємо з умови
. Переведемо тривалість імпульсу в секунди (
=56мкс):
.

Сигнал подається на тиристор через

, тому період повторення імпульсів визначається як

Для тиристора Т151-100-13 струм та напругу керування:

2.2 Розрахунок параметрів елементів кола керування тиристорами

Схема підключення ланцюга керування має такий вигляд (рис. 2.1).

Рисунок 2.1 — Схема підключення ланцюга керування тиристорами

В якості розв’язки застосований діодно-оптотиристорний модуль VE1. Виконаємо розрахунок елементів ланцюга керування тиристорами.

Шунтуючий діод VD3, для надійного закриття тиристора обираємо за умови: Uобр.доп>Uxx=324,24 (B);

.

Приймаємо діод типу ВЛ100.

Через оптотиристор оптрону проходить струм керування силового тиристора

=300 (мА). Тоді величину опору обмежуючого резистора R10 знаходимо за такої умови:

,

де Uy – Напруга відкритого тиристора, Uy = 4 (В).

Визначаємо потужність розсіювання на резисторі R10, за умови імпульсного характеру керування:

.

Приймаємо до установки резистор ТВО-2-100 Ом±20%.

З джерела [1] обираємо стандартний діодно-оптотиристорний модуль. Вибір провозимо за

– середньому значенню струму через оптотиристор:


Приймаємо до установки модуль МДТО80-12 з параметрами:

Рисунок 2.2 — Схема ланцюга керування тиристорами

Крізь світодіод оптрона проходить струм керування

. Величина опору обмежуючого резистора R8 значодимо з умови, що коефіцієнт трансформації TV2 приймаємо
, і максимальну напругу на вторинній обмотці TV2 буде дорівнювати U2 =Eк/5= 30/5=6 (В).

,

де Uy – спадання напруги на свтодіоді оптрону.

Визначаємо потужність розсіювання на риезисторі R8:

.

Приймаємо до установки резистор типу ОМЛТ-0,125-47±1%.

Внутрішній опір керування оптотиристора:


.

Тоді повний опір навантаження ланцюга керування тиристорами:

Rн = Ry + R8 = 47+31,25 = 78,25 (Ом).

Для захисту світодіоду оптрона від перенапруг, які виникають на обмотках трансформатора TV2 при знятті импульсу керування, обмотка TV2 шунтується діодом VD8. Діод обираємо з умови Uобр > 2Eк =60 (B); Iпр = Iм = Iy = 0,08 (А), де Iм – струм намагнічення трансформатора TV2.

Обираємо до установки діод КД109Б з наступними параметрами:

Uобр = 100 (В), Iпр = 0,3 (А).

2.3 Розрахунок параметрів елементів блокінг-генератора

Схема блокінг-генератора представлена на рисунку 2.3.


Рисунок 2.3 — Схема блокінг-генератора

Максимальний струм в ланцюгу колектора VT2 (струм первинної обмотки Wk) визначимо як

.

Допустиму напругу на колекторі визначимо як:

.

Визначимо імпульсну потужність колекторного ланцюга:

.

Визначимо середню потужність вихідного каскаду:


.

З довідника за даними Uкэ.доп, Im, Pn обираємо транзистор КТ601М з наступними параметрами:

- максимальна напруга колектор-емітер Uкэ.max = 100 (B);

- максимальний струм колектора Iк.max = 0,03 (А);

- максимальна розсіювана потужність Pк.max = 0,5 (Вт).

З довідника [3] беремо вхідні та вихідні характеристикии (малюнок 2.4) та бужуємо характеристики навантаження за постійним та змінним струмом.

Рисунок 2.4 — Вхідні та вихідні характеристики транзистора КТ601М (КТ601А)

Визначимо приведений опір в ланцюгу колектора:

.

Визначимо струм короткого замикання

.

Визначимо напругу холостого ходу

.

Будуємо лінію навантаження за постійним струмом. В момент перетину Iб = 50 (мкА) (струм відсічки) з лінією навантаження отримаємо робочу точку А. В результаті графічних будувань знаходимо: струм спокою Iкo = 5 (мА) и Uкo = 20 (В).

Визначаємо струм короткого замикання за змінним струмом

:

,

де

- коефіцієнт робочої точки при збільшенні температури
.

З точки

= 23,3 (мА) крізь точку А проводимо пряму навантаження за змінним струмом. Графічно знаходимо максимальний струм бази Iб.макс = 250 (мкА).

Визначаємо величину опору змінному струму:

.

З графічних побудов знаходимо:


Uкн = 2,5 (B); Iкн = I”к = 23,3 (мА);Uб0 = 1,35 (В); Uб.макс = 2,85 (В).

Тоді

;
.

.

Коефіцієнт підсилення каскада

.

Задаючись спаданням напруги на резисторі R6 яке дорівнює (0,15…0,2)Eк визначимо величину резистора:

.

Допустима потужність розсіювання на R6:

.

Приймаємо до установки резистор типу ОМЛТ–0,125–1 кОм±10%.

Визначимо опір дільників ланцюга бази.

Звичайно приймають

.

Тоді

.

.

Визначимо потужність розсіювання на резисторах R7 ,R9:

.

.

Приймаємо резистор R7 типу КИМ–0,05–2,4 кОм±10%; резистор R9 типу КИМ–0,05–6,8 кОм±10%.

Ємність конденсатора С5 визначимо з умови найменших відхилень:

.

Приймаємо до установки конденсатор типу К76-П1-63 В-3,3 мкФ.

Визначаємо опір ланцюга стабілізації:

Вхідний опір блокінг-генератора

.

Розрахунок імпульсного трансформатора поснемо з вибору коефіцієнта трансформації

який розраховується як:
.