Смекни!
smekni.com

Управление напряжением рентгеноскопической установки (стр. 2 из 13)

Таким образом, получаем точный анализ багажа и веществ, лучшее изображение багажа на мониторе за счет управления интенсивностью и спектром излучения. Разрабатываемая система предназначена для управления генератором рентгеновского излучения, в роли которого выступает рентгеновская трубка.

1.2 Анализ ТЗ на разработку

Исходными данными для нашей системы является паспорт рентгеновской трубки, который изображен на рис. 1.2 и табл. 1.1. В нем приведены режимы работы ОУ, марка, номиналы, температура, динамические и статические характеристики.

Рисунок 1.2 – Рентгеновская трубка 0.32BPM34-160

Таблица 1.1 Технические характеристики рентгеновской трубки 0.32BPM34‑160

Параметр Не менее номинальное Не более
Ток накала, А 3.3
2.3
Напряжение накала, В 3.6
1.7
Анодное напряжение, кВ 70 160
Анодный ток, мА 2
Номинальная мощность трубки , кВт 0.32
Размеры эффективного фокусного пятна, мм
-ширина 0.6 0.9
-длина 0.4 0.7

Анализ и обработка результатов измерений проводится в автоматическом режиме. Для этого разработаны методики анализа многих элементов для различных типов веществ. Методики реализованы в виде компьютерных программ. Во время измерения компьютер управляет всеми узлами спектрометра в соответствии с заданной программой анализа. Современный уровень надежности оборудования и устройство автоматической подачи образцов позволяют выполнять анализ непрерывно круглосуточно без участия оператора. По окончании измерений компьютер выполняет расчет концентраций. Результаты анализа передаются электронными средствами связи автоматически по указанным адресам, либо накапливаются в базе данных измерений для дальнейшей обработки.

Поскольку разработкой системы в целом занимается другая организация, то в рамках данной работы будет проводиться исключительно разработка регуляторов в цепях управления анодным напряжением и током накала.

Все остальные элементы системы определяются заказчиком.

Защита обслуживающего персонала и пассажиров от рентгеновского излучения обеспечивается в интроскопах свинцовыми экранами, предотвращающими утечку и рассеивание излучения в окружающем пространстве. Дополнительными мерами защиты служит дублируемый контроль интенсивности излучения и автоматическое выключение генератора в критических ситуациях.

Поскольку главная обратная связь в рентгенотелевизионной установке отсутствует, то контроль управляемых параметров невозможен. Но частота излучения пропорциональна анодному напряжению, а интенсивность – функция анодных напряжения и тока. Поэтому производится управление этими параметрами

Разрабатываемая система управления является двухконтурной. Поэтому в нашей системе две управляющих переменных – анодное напряжение и анодный ток, соответственно 2 канала. В одном канале используется регулятор ПИ –типа, а в другом канале ПИД – типа. В канале , где управляющей переменной является анодный ток, мы выбрали регулятор ПИ – типа. Т.к. в системе возникает статическая ошибка, то в систему вводим интегральную составляющую для того , чтобы повысить точность в установившемся режиме. В канале , где управляющей переменной является анодное напряжение, мы выбрали регулятор ПИД – типа. Поскольку интегральная составляющая вносит в истему запаздывание по фазе, что приводит к уменьшению запаса устойчивости по амплитуде и фазе и увеличивается длительность переходного процесса, то вводим дифференциальную составляющую.

Выполнение требований заказчика к качеству системы будет осуществляться разработкой ПИД-регуляторов на основе построенной машинной модели с использованием различных методик построения управляющих устройств (как аналитических, так и численных).

После чего из различных регуляторов будет отобран, обеспечивающий наилучшие показатели качества.

При этом основным критерием выбора является минимизация высокочастотных составляющих в спектрах питающих генератор напряжений, как основной источник искажения выходных характеристик трубки.

1.3 Обзор литературы

1.3.1 Рентгеновские спектры

Рентгеновские спектры, спектры испускания и поглощения рентгеновских лучей, т. е. электромагнитного излучения в области длин волн от 10-4 до 103 [1]. Для исследования спектров рентгеновского излучения, получаемого, например, в рентгеновской трубке, применяют спектрометры с кристаллом-анализатором (или дифракционной решёткой) либо бескристальную аппаратуру, состоящую из детектора (сцинтилляционного, газового пропорционального или полупроводникового счётчика) и амплитудного анализатора импульсов. Для регистрации рентгеновского спектра применяют рентгенофотоплёнку и различные детекторы ионизирующих излучений[27,28,29].

Тормозное излучение, электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие тормозное излучение включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (в ускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин синхротронное излучение[36].

Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновского спектра. Тормозной рентгеновский спектр возникает при торможении заряженных частиц, бомбардирующих мишень . Интенсивность тормозного спектра быстро растет с уменьшением массы бомбардирующих частиц и достигает значительной величины при возбуждении электронами. Тормозной рентгеновский спектр — сплошной, так как частица может потерять при тормозном излучении любую часть своей энергии. Он непрерывно распределён по всем длинам волн

, вплоть до коротковолновой границы (рис.1.3) [27,32].

Рисунок 1.3- Распределение интенсивности I тормозного излучения W по длинам волн l при различных напряжениях V на рентгеновской трубке.

Согласно классической электродинамике, которая достаточно хорошо описывает основные закономерности тормозного излучения, его интенсивность пропорциональна квадрату ускорения заряженной частицы. Так как ускорение обратно пропорционально массе m частицы, то в одном и том же поле тормозное излучение легчайшей заряженной частицы — электрона будет, например, в миллионы раз мощнее излучения протона. Поэтому чаще всего наблюдается и практически используется тормозное излучение, возникающее при рассеянии электронов на электростатическом поле атомных ядер и электронов; такова, в частности, природа рентгеновских лучей в рентгеновских трубках и гамма-излучения, испускаемого быстрыми электронами при прохождении через вещество[30,31].

Спектр фотонов тормозного излучения непрерывен и обрывается при максимально возможной энергии, равной начальной энергии электрона. Интенсивность тормозного излучения пропорциональна квадрату атомного номера Z ядра, в поле которого тормозится электрон. При движении в веществе электрон с энергией выше некоторой критической энергии E0 тормозится преимущественно за счёт тормозного излучения (при меньших энергиях преобладают потери на возбуждение и ионизацию атомов) [8,9,10].

Рассеяние электрона в электрическом поле атомного ядра и атомных электронов является чисто электромагнитным процессом, и его наиболее точное описание даёт квантовая электродинамика. При не очень высоких энергиях электрона хорошее согласие теории с экспериментом достигается при учёте одного только кулоновского поля ядра. Согласно квантовой электродинамике, в поле ядра существует определённая вероятность квантового перехода электрона в состояние с меньшей энергией с излучением, как правило, одного фотона (вероятность излучения большего числа фотонов мала). Поскольку энергия фотона E

равна разности начальной и конечной энергии электрона, спектр тормозного излучения имеет резкую границу при энергии фотона., равной начальной кинетической энергии электрона Te, рис. 1.4. Так как вероятность излучения в элементарном акте рассеяния пропорциональна Z 2, то для увеличения выхода фотонов тормозного излучения в электронных пучках используются мишени из веществ с большими Z (свинец, платина и т.д.). Угловое распределение тормозного излучения существенно зависит от Te: в нерелятивистском случае тормозное излучение подобно излучению электрического диполя, перпендикулярного к плоскости траектории электрона. При высоких энергиях тормозное излучение направлено вперёд по движению электрона и концентрируется в пределах конуса с угловым раствором порядка; это свойство используется для получения интенсивных пучков фотонов высокой энергии (
-квантов) на электронных ускорителях. Тормозное излучение является частично поляризованным[9,10,27,28,36].