Смекни!
smekni.com

Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями (стр. 2 из 4)

(12)

Здесь «вынужденные» члены в правых частях можно вывести, принимая во внимание то обстоятельство, что величины в соотношениях (6) и падающая волна (

) непрерывны при | x | = a.

Из уравнений (3) следует, что

представляет собой производную
, умноженную на постоянный коэффициент, поэтому, полагая

(13)

можем добиться того, чтобы удовлетворялось граничное условие (В3). В приведенных соотношениях символ производной

означает, что в производной
выполнен предельный переход
. Таким образом, разлагая волну на торцевой плоскости ( при | x | = a) в следующий ряд, можем легко найти специальные решения уравнений (12):

(14)

(15)

Что касается соотношений (14), то они превращаются в специальный способ разложения в ряд Фурье. Иначе говоря, представляют собой разложения по системе ортогональных функций, превращающихся в нуль при | y | =b. Физически они представляют собой собственные колебания плоскопараллельного волновода. Достаточность таких разложений будет видна из обсуждения свойств регулярности, о которых речь идет ниже. Окончательно, в качестве решения уравнений (12), удовлетворяющих граничным условиям (В2), (В3), можем записать следующие выражения :

(16

Здесь члены рядов представляют собой частные решения. Кроме того, неизвестные функции, снабженные нижними индексами C, S, представляют собой, с учетом свойств четности в соотношениях (10), следующие выражения ( j=0, 1):

(17)

Наконец, выполняются следующие соотношения ( j=0, 1, q= c, s):

(18)

В заключение обсудим коэффициенты разложений в формулах (14). Как отмечалось и при разъяснении формул (6), выступающих в качестве определений, за исключением членов, связанных с падающей волной (известные выражения), функция

определена при x>a, а функция
определена при x<-a. Это означает, что Фурье-компоненты этих функций обладают следующим свойствами регулярности, за исключением полюса при
=
q: компонента
регулярна в верхней полуплоскости (области U), а компонента
регулярна в нижней полуплоскости (области L). С другой стороны, функция
определена на ограниченном интервале -a<x<b, так что ее Фурье-компонента представляет собой целую функцию. Конкретно, записывая в следующем виде

(19)

заметим, что

регулярна в верхней полуплоскости, а
регулярна в нижней полуплоскости. Функции в соотношениях (16) обладают свойствами регулярности, о которых говорилось здесь, поэтому коэффициенты разложений по формулам (14) не являются произвольными, а их нужно определять таким образом, чтобы исключить полюса в каждой полуплоскости. После выполнения необходимых преобразований коэффициенты могут быть заданы в следующем виде:

(20)

Если допустить иные разложения, чем задаваемые формулами (14), то сохранение описанных здесь свойств регулярности становится невозможным. Таким образом ясно, что способ разложения по формулам (14) оказывается достаточным для рассматриваемой задачи.

УРАВНЕНИЯ ВИННЕРА-ХОПФА

В предыдущем разделе было установлено, что используя только Фурье-компоненты рассеянной волны (конкретно,

) на граничной плоскости | y|=b, можно представить Фурье-компоненты рассеянной волны в каждой из областей (
) таким образом, чтобы удовлетворялись граничные условия (В1), (В2), (В3). Таким образом, если в конечном счете удастся отыскать эти неизвестные Фурье-компоненты так, чтобы удовлетворить граничному условию (В4), то тем самым поставленная задача будет решена. Как следует из уравнений (3), граничное условие (В4) можно свести к непрерывности производной
при | y|=b. Если записать это требование, используя формулы (9) и (16), то окончательный результат после выполнения необходимых преобразований, учитывающих свойства четности Фурье-компонент, может быть записан в следующем виде (q= c, s):

(21)

Здесь кернфункции (ядра)задаются следующими формулами:

(21)

(22)

Уравнения (21) по существу представляют собой систему уравнений Винера-Хопфа. Этот факт становится еще более очевидным, если применить преобразования по приводимым ниже формулам. А именно, если умножить эти уравнения на

или
, выполнить преобразования с использованием соотношений (19), то можно получить два следующих соотношения:

(24)

При этом имеют место следующие соотношения:

(25)

(26)

Тот факт, что правые части в формулах (24), а в конечном счете, правые части в формулах (26), являются регулярными в верхней полуплоскости (области U) или в нижней полуплоскости (области L ), можно установить следующим образом. Ясно, что с первого взгляда можно заключить, что особенностью функции

являются только полюса в L. Однако, эти полюса исключаются в силу соотношений, представляемых формулой (20), так что эта функция оказывается регулярной в нижней полуплоскости. Аналогично, функция
является регулярной в верхней полуплоскости.

Что касается системы уравнений Винера-Хопфа, представленной формулой (24), то ее решение можно найти, выполняя интегрирование вдоль разрезов от точек ветвления в разложениях керн-функций на множители. При выполнении расчетов возникают определенные затруднения, однако вывод решений проводится автоматически. Сначала выполняем разложение керн-функций на частное (произведение) функций, регулярных в верхней полуплоскости и в нижней полуплоскости, и, сверх того, не имеющих нулей (j=0, 1, q= c, s):

(27)

Затем, делим (умножаем) правые части и левые части уравнений (24) на эти функции разложения, исключаем их полюса и выполняем интегрирование вдоль разрезов от точек ветвления. Если выполнить описанные действия, то обе части уравнений (24) можно разложить таким образом, что они окажутся регулярными соответственно в верхней полуплоскости (область U) или в нижней полуплоскости (область L). Более того, полученные соотношения окажутся справедливыми в общей области Д. Следовательно, по теореме Лиувилля обе части вместе оказываются функциями, регулярными во всей плоскости, т.е. постоянными. Однако, эти постоянные в силу граничного условия (В5) концевой точки, оказываются равными нулю, так что решение уравнений (24) определяется единственным образом. Здесь в качестве граничного условия концевой точки принимается условие

-const при | x | ®a, | yb. Окончательный результат представляется в следующем виде:

(28) Здесь
выражаются через интегралы вдоль разрезов от точек ветвления (рис. 3, 4). А именно, если считать, что функция регулярна в точках пути интегрирования
то тогда
определяются по формулам: