Смекни!
smekni.com

Операционные усилители (стр. 3 из 3)

Отрицательная обратная связь. Во многих случаях ОУ применяется с отрицательной обратной связью. При этом характеристики схемы не зависят от коэффициента усиления операционного усилителя без обратной связи К, а определяются только параметрами внешних элементов.

Принцип введения отрицательной обратной связи иллюстрируется рис. 2.1

Рис. 2.1. Принцип отрицательной обратной связи

Часть выходного напряжения возвращается через цепь обратной связи ко входу усилителя. Коэффициент обратной связи β показывает, какая часть выходного напряжения подается на вход; он может принимать значения от нуля до единицы.

Если, как это показано на рис. 2.1, напряжение обратной связи вычитается из входного напряжения, обратная связь называется отрицательной.

Для физического анализа схемы, представленной на рис. 2.1, допустим, что входное напряжение изменилось от нуля до некоторого положительного значения UВХ. В первый момент выходное напряжение UВЫХ, а следовательно, и напряжение обратной связи βUВЫХ также равны нулю. При этом напряжение, приложенное ко входу операционного усилителя, составит UД = UВХ. Так как это напряжение усиливается усилителем с большим коэффициентом усиления KU, то величина UВЫХ быстро возрастет до некоторого положительного значения и вместе с ней возрастет также величина βUВЫХ. Это приведет к уменьшению напряжения UД, приложенного ко входу усилителя. Тот факт, что выходное напряжение воздействует на входное напряжение, причем так, что это влияние направлено в сторону, противоположную изменениям входной величины и есть проявление отрицательной обратной связи. После достижения устойчивого состояния выходное напряжение ОУ

UВЫХ =KUUД =KU(UВХ – βUВЫХ).

Решив это уравнение относительно UВЫХ, получим:

K=UВЫХ /UВХ =KU/(1 + βKU) (2.1)

При βKU >>1 коэффициент усиления ОУ, охваченного обратной связью составит

K = 1/β (2.2)

Таким образом, из этого соотношения следует, что коэффициент усиления ОУ с обратной связью определяется почти исключительно только обратной связью и мало зависит от параметров самого усилителя. В простейшем случае цепь обратной связи представляет собой резистивный делитель напряжения. При этом схема с ОУ работает как линейный усилитель, коэффициент усиления которого определяется только коэффициентом ослабления цепи обратной связи. Если в качестве цепи обратной связи применяется RC-цепь, то образуется активный фильтр. Наконец, включение в цепь обратной связи ОУ диодов и транзисторов позволяет реализовать нелинейные преобразования сигналов с высокой точностью.

Инвертирующий усилитель. Этот усилитель изменяет полярность усиливаемого сигнала на противоположную, рис. 2.2.


Согласно правилу 1 потенциал точки А равен потенциалу земли. Поэтому точку А можно назвать виртуальной землей. Через резистор RВХ протекает ток

, (2.3)

направление которого зависит от полярности входного напряжения. В RВХ входит также и внутреннее сопротивление источника сигнала. Согласно правилу 2 ток протекающий через сопротивление обратной связи также равен I. Этот ток создает на RОС падение напряжения

.

С учетом (2.3) это напряжение определяется следующим образом:

.

Учитывая, что точка А потенциально заземлена, напряжение на выходе ОУ равно

, (2.4)

где

- коэффициент передачи напряжения инвертирующего усилителя с ОС.

Знак «-» показывает, что выходное напряжение находится в противофазе со входным.

Ток нагрузки IН определяется только её сопротивлением RН и UВЫХ: IН=UВЫХ/RН. Ток в нагрузку отдает выходная цепь ОУ: IВЫХ=I+IН. Максимальное значение IВЫХ зависит от ОУ (типовое значение 5…20 мА). Сопротивление RН должно быть таким, чтобы величина IВЫХ не превышала максимально допустимого значения для данного ОУ. В противном случае ОУ теряет работоспособность.

Входное сопротивление усилителя (рис. 2.2) для генератора ЕВХ равно RВХ. Поэтому для повышения входного сопротивления схемы необходимо увеличение сопротивления RВХ ( RВХ≥ 10 кОм).

Неинвертирующий усилитель. Усилитель, рис. 2.3 не инвертирует входной сигнал.

В отличие от инвертирующего, неинвертирующий усилитель обладает большим входным сопротивлением. Согласно правилам 1 и 2 ток в цепи обратной связи I=ЕВХ/R и создает падение напряжения на резисторе RОС равное ЕВХ RОС/R.

Учитывая, что выходное напряжение складывается из падений напряжений на резисторе RОС и R можно записать:

, (2.5)

где КОС=(1+RОС/R) - коэффициент передачи напряжения неинвертирующим усилителем.

Сравнивая (2.4) и (2.5) нетрудно заметить, что коэффициент усиления по напряжению неинвертирующего усилителя равен абсолютной величине коэффициента усиления инвертирующего усилителя плюс единица.

Дифференциальный усилитель. Усилители сигналов применяются в различных электронных измерительных устройствах. Дифференциальный усилитель, рис. 2.4, дает возможность измерять и усиливать слабые сигналы. Все применяемые резисторы прецизионные (с допуском не более 1%). Положим, что источник напряжения Е1 замкнут накоротко. Для источника Е2 схема является инвертирующим усилителем с коэффициентом усиления -m, т.е.

.

Если закорочен источник Е2, то напряжение Е1 делится резисторами R и mR. Напряжение на входе (+):

Для напряжения U(+) схема является неинвертирующем усилителем с коэффициентом усиления (1+m).

При наличии обоих источников напряжения (Е1¹0, Е2¹0) выходное напряжение равно:

, (2.6)

где m - дифференциальный коэффициент усиления.

Выходное напряжение дифференциального усилителя пропорционально разности напряжений приложенных к инвертирующему и неинвертирующему входам.

При наличии Е12=0 выходное напряжение равно нулю, то есть для синфазного входного напряжения UВЫХ=0.

В идеале ЕСИНФ никак не влияет на выходное напряжение усилителя. В действительности же за счёт отличия КСИНФ от нуля UВЫХ, хотя и в очень незначительной степени, отслеживает изменения ЕСИНФ.

Благодаря тому, что

усилитель позволяет выделить слабый сигнал на фоне сильной помехи. Для этого необходимо сделать так, чтобы для дифференциального усилителя помеха была синфазным напряжением, а полезный сигнал – дифференциальным.