Смекни!
smekni.com

Использование активного ила в качестве удобрения сельскохозяйственных культур в условиях радиоактивного загрязнения территории (стр. 5 из 13)

После прекращения радиоактивных выпадений, осевшие на растения радиоактивные вещества, в полевых условиях могут смываться дождями и стряхиваться ветром. Наибольшие полевые потери этих веществ с загрязненных растений происходит сразу же после окончания радиоактивных выпадений, когда радиоактивные вещества еще прочно не закрепились на поверхности листьев, стеблей, соцветий, плодов. С течением времени интенсивность потерь заметно снижается (таблица1).

1. Полевые потери стронция-89 загрязненными растениями в разные сроки после нанесения раствора радионуклида на кормовые сеяные травы (в процентах от первоначально задержанного количества)

Показатели Декада после нанесения стронция-89на растения
1-я 2-я 3-я 4-я 5-я 6-я 7-я
Потери (отдельно по каждой декаде) 37 31 12 8 4 2 1
Суммарные потери за время наблюдения 37 68 80 88 92 94 95

При длительном пребывании загрязненных растений в поле суммарные потери радиоактивного загрязнения могут достигать значительных величин: 80-95%. Отсюда следует, что чем дольше после выпадения радиоактивных осадков растения будут находиться в поле, тем меньше будет загрязнен урожай радиоактивными веществами[21,25].

В случае загрязнения растений радиоактивными осадками на локальных следах ядерных взрывов, когда в составе загрязнителя преобладают короткоживущие радионуклиды, одновременно с полевыми потерями радиоактивных веществ будет происходить также снижение радиоактивности за счет радиоактивного распада короткоживущих радионуклидов. Скорость распада непостоянная и изменяется во времени. Вначале она наиболее высокая, а затем, с течением времени, постепенно снижается. Тем не менее, снижение радиоактивного загрязнения растений, обусловленное этой причиной, может быть весьма существенным. Так, величина радиоактивности смеси продуктов деления 1-часового возраста уменьшается за первые 10 суток в 720 раз, за последующие 20 суток - еще в 2.4 раза, а в целом за месяц - в 2600 раз. Снижение радиоактивного загрязнения урожая за счет распада короткоживущих радионуклидов происходит не только в период вегетации растений, но также и после уборки урожая во время его хранения. При этом зачастую может сложиться такая ситуация, когда урожай, имеющий на момент уборки повышенный уровень радиоактивного загрязнения, после хранения на складах и хранилищах становится вполне пригодным для использования[3,29].

Обычно пригодность загрязненной продукции для использования оценивается по концентрации в ней радионуклидов, т.е. по содержанию их в единице веса продуктов.

Размеры аэрального радиоактивного загрязнения урожая некоторых сельскохозяйственных культур стронцием-90 приведены в таблице 2. В условиях полевого эксперимента водный раствор стронция-90 путем мелкокапельного дождевания наносился на вегетирующие посевы в разные сроки: 8 июля и 15 августа. Уборка урожая производилась по мере созревания культур: 23 августа — горох и ячмень, 27 августа - гречиха, пшеница, овес, кукуруза (на силос), картофель, 6 сентября - просо и подсолнечник, 12 сентября — сахарная свекла.

Приведенные в таблице 2 данные подтверждают положение о том, что чем больше времени проходит от выпадения радиоактивных осадков на посевы до уборки урожая, тем меньше радиоактивное загрязнение получаемой растениеводческой продукции[26].

2. Концентрация стронция-90 в урожае сельскохозяйственных культур при различных сроках нанесения на посевы радиоактивного раствора из расчета 1 Кu/км2

Культура Фаза развития растений во время загрязнения посева Концентрация стронция-90 в 10-9 Кu/кг
в листьях в стеблях в мякине, корзинке в зерне, клубнях, корнеплодах
1 2 3 4 5 6
Посевы загрязнены 8 июля
Яровая пшеница выход в трубку 403 8.2 32,6 1,73
ячмень начало колошения 743 76 87 2,34
овес выход в трубку 379 12,3 43,9 1,27
просо кущение 186 3,4 5,7 1,61
горох цветение 260 91 28,2 0,87
гречиха цветение 352 41,7 114 5,08
картофель бутонизация 251 74,4 - 0,16
сахарная свекла розетка 6 листьев 9,1 - - 0,69
подсолнечник 6-7 листьев 38 2,1 3,2 -
Посевы загрязнены 15 августа
яровая пшеница молочная спелость 2290 222 701 53,2
ячмень полная спелость 2730 398 1000 60,8
овес молочная спелость 1730 163 1640 63,4
просо выметывание метелки 1100 72 384 226
горох созревание зерна 2470 562 294 6,5
гречиха формирование зерна 1770 231 1550 131
картофель рост клубней 1850 349 - 0,33

Из числа изучавшихся культур максимальное загрязнение хозяйственно ценных частей урожая отмечается у проса и гречихи. Значительно ниже концентрация стронция-90 в зерне пшеницы, ячменя и овса. Очень слабо загрязняется урожай картофеля и сахарной свеклы [3,4, 6, 12,36].

Почвенный путь радиоактивного загрязнения сельскохозяйственных растений и их урожая

После прекращения радиоактивных выпадений загрязнение урожая сельскохозяйственных культур происходит главным образом в результате поступления радионуклидов в растения из загрязненной почвы. Источником радиоактивного загрязнения почвы, так же как и растительности, являются радиоактивные выпадения из атмосферы. В зависимости от продолжительности выпадений загрязнения почвы сельскохозяйственных угодий может быть одноразовым или длительным (как, например, при глобальных выпадениях, продолжающихся в течение нескольких лет). В первом случае почвенный путь поступления радионуклидов в растения будет главным источником радиоактивного загрязнения урожая уже в следующем вегетационном сезоне после выпадения радиоактивных осадков. Во втором случае первые 2-4 года будет преобладать аэральный путь радиоактивного загрязнения растений, а в последующие годы – почвенный [42,47].

Радиоактивные вещества, осевшие на поверхность почвы, вступают во взаимодействие с почвенными частицами, и почва, как основной компонент агроценоза, оказывает определяющее влияние на характер миграции радионуклидов по биологическим цепочкам. Известно, что почва является хорошим поглотителем для многих химических веществ, в том числе и для радионуклидов [5,4].

Поглощение радионуклидов происходит сразу же при контакте их с почвой. Разные почвы обладают неодинаковой способностью к поглощению радионуклидов, но в целом поглощается не менее 50%, а во многих случаях значительно больше. Так, при внесении в дерново-подзолистую супесчаную почву растворимых форм радионуклидов было поглощено 66% стронция-90, 98% цезия-137, 98% церия-144, 94% кобальта-60, 49% рутения-106. Еще сильнее радионуклиды поглощаются черноземной почвой: стронций-90 - 96%, цезий-137 — 100%, церий-144 - 100%, кобальт - 60-91%, рутений - 106-61%.

Поглощение и фиксация радионуклидов почвой затрудняет их усвоение корневой системой. Поэтому поступление радионуклидов из почвы в растения в десятки раз меньше, чем из водного раствора, т.е. почва представляет собой мощный барьер на пути миграции радионуклидов по пищевым цепочкам [3,39].

Биологическая избирательная способность растений к усвоению различных химических веществ и различия физико-химических свойств радионуклидов обуславливают неодинаковые размеры поступления отдельных радионуклидов из почвы в растения (таблица 3) [5].

3. Концентрация радионуклидов в урожае ячменя при плотности радиоактивного загрязнения почвы 1 Кu/км2 (почва – выщелоченный чернозем)

Радионуклиды 10-9 Кu/кг Отношение концентрации радионуклида в соломе к концентрации в зерне
Цинк-65 8.6 2.2 3.9
Стронций-90 4.0 0.3 13.3
Кадмий-115 3.6 1.0 3.6
Марганец-54 1.65 0.3 5.7
Цезий-137 0.43 0.1 4.3
Прометий-147 0.3 0.07 4.3
Рутений-106 0.1 0.02 5.0
Кобальт-60 0.1 0.17 0.59
Церий-144 0.01 0.07 0.14

Из числа приведенных в таблице 3 радионуклидов цинк-65 поступает из почвы в растения в максимальных количествах, как в вегетативные органы, так и в зерно. По концентрации в соломе цинк-65 превосходит рутений-106 в 860 раз. Можно отметить, что в большинстве случаев накопление радионуклидов в вегетативных органах значительно выше, чем в зерне: для кобальта-60 и рутения-106 характерно обратное - преимущественное накопление их в зерне. Отсюда следует, что радионуклидный состав радиоактивного загрязнения почв далеко не безразличен для радиоактивного загрязнения урожая. Существенное значение имеет также длительность жизни радионуклидов, загрязняющих почву. Долгоживущие радионуклиды (такие как стронций-90 и цезий-137) создают длительно действующие источники их поступления в растения и, напротив, короткоживущие, как, например, йод-131 с периодом полураспада около 8 дней, представляет значительно меньшую опасность для загрязнения урожая корневым путем, поскольку за период от начала вегетации растений до уборки урожая он практически исчезает в результате радиоактивного распада [42].