Смекни!
smekni.com

Вплив легування цинком на властивості МОН структур (стр. 5 из 12)

Для зменшення об’єму емпіричних досліджень вирощування плівок проведено розрахунок температурно-часових характеристик технологічного процесу отримання плівок SiO2 заданої товщини при різному складі парогазового середовища в реакторі. В якості вихідних використали відомі з літератури [10] залежності швидкості росту оксидних плівок на монокристалічному кремнії в атмосфері або зволоженого кисню, або парах води з вмістом хлориду водню, які найближчі до досліджуваного в даній роботі процесу гетерування дефектів плівок SiO2. Це визначається тим, що в ньому в склад окислювального середовища вводять хлорид цинку, тобто, він є, в якійсь мірі, аналогом відомого з літератури процесу хлорного окислення. Тому тут використані такі стандартні рівняння:

1. d2=4.16*103p1.6t exp(-1.7/kT) – в парах води (16);

2. d=1.4*103p0.8t exp(-1.7/kT) – в сухому кисні (17),

де d – товщина плівки [нм];

t – час [с];

T – температура [К];

k – постійна Больцмана.

При розрахунках товщину плівки підзатворного діелектрика задавали в межах від 50 до 150 нм. З умов проведення експерименту загальний тиск в системі приймали рівним атмосферному. Температуру процесу окислення задавали в межах від 950 до 1100°С з кроком 50°С. Для розрахунків використовували програмний пакет “Maple 6”.

Результати розрахунків приведені в табл. 1

2.3 Методика досліджень дефектності діелектричних плівок.

Методи дослідження дефектності плівок розробляли виходячи з особливостей структури, кількості, розмірів та розміщення дефектів у матеріалі. При чому, в залежності від характеристик об’єкту досліджень, методи досліджень суттєво відрізняються між собою [10].

В діелектричних плівках виробів електронної техніки пори проявляються як поодинокі небажані дефекти. Пори в плівках мають, як правило, субмікронні розміри і безпосередньо не виявляються оптичними приладами.

Методи дослідження дефектності, зокрема пористості діелектричних плівок виробів електронної техніки описані в [10]. Проведемо їх аналіз. За дією на об’єкт досліджень їх можна поділити на дві групи: руйнуючі і неруйнуючі. Суцільною рисою всіх методів є фіксація місця розміщення пори на поверхні і наступні металографічні дослідження.

Неруйнуючі методи:

а) одним з методів виявлення дефектних місць у діелектричній плівці на монокристалічній напівпровідниковій підкладці є “бульбашковий” метод: підкладку занурюють в електролітичний розчин і освітлюють її поверхню. До підкладки прикладають від’ємну напругу зміщення так, що в провідних місцях (електрично активних) утворюються бульбашки газоподібного водню. Електроліт не повинен окислювати поверхню напівпровідникової підкладки. Як електроліти використовують 1-2% розчини лимонної або оцтової кислоти в деіонізованій воді. Роль анода у електролітичній комірці виконує платиновий дріт. Контроль якості діелектричних плівок з допомогою методів, основаних на виділенні газоподібних продуктів електролізу з дефектних місць, проводиться також при електролізі розчинів метилового і етилового спиртів, які містять 1% оцтової або сірчаної кислоти у деіонізованої води [15,16].

Виділення бульбашок водню з дефектних місць при електролізі спиртових розчинів починається при напрузі 8-10 В. плавне підвищення прикладеної напруги приводить до виявлення менших за розмірами пор і збільшення їх густини, але при напрузі більшій 30 В відбувається інтенсивне віялоподібне виділення водню у електроліті, що робить неможливим реєстрацію і визначення істинної густини дефектів.

Електроліз супроводжується виділенням водню на пластині–катоді у місцях дефектів і кисню на аноді. В реальному випадку за рахунок впливу поляризації електроліту і типу електродів для розкладення деіонізованої води необхідно прикладати напругу 2,1-2,6 В. Розроблена комірка, яку застосовували для вивчення електрохімічних процесів виділення бульбашок, в якій їх реєстрували на поверхні діелектричної плівки в дефектних місцях після 2-3 хв. електролізу при напрузі 4-6 В. Продовження електролізу веде до збільшення бульбашок за розміром і у випадку їх утворення над дефектами великих розмірів – до віддалення від поверхні, тому підрахунок густини бульбашок проводиться після вимикання або зниження напруги. Роздільна здатність цього методу складає 40-60 мкм.

б) зручнішим для аналізу дефектності діелектричних плівок є метод, який полягає у використанні спеціального електроліту, до складу якого входять: сірчанокисла мідь – 5 г/л; желатин – 5 г/л; деіонізована вода – 1л [13,14].

Суть методу полягає в наступному. При подачі напруги з області пори на пластині-катоді відбувається електрофоретичне виділення водню в результаті електролізу. Процес проводять при напрузі 10-50 В. Бульбашки водню покриті плівкою желатину, армованою міддю, що забезпечує високу міцність плівки і добре зчеплення з поверхнею діелектрика. Висока чутливість (біля 0.1 мкм) методу забезпечується тим, що електроліз води йде не на кремнії, а на міді, яка осідає у порі і виходить на поверхню плівки. Вказаний метод ми використовували для дослідження наших об’єктів.


Рис 2.3.1. Схема установки.

Руйнуючі методи:

а) Анодне травлення використовується для виявлення дефектів в підкладці з полікристалічного кремнію [15] і має переваги хімічного травлення і методу наведення струму. Електролітична комірка складається з пластмасової склянки з електролітом, в який занурюють катод з платинового дроту і зразок – анод, закріплений на металевому стержні. Електролітом служить розчин плавикової кислоти концентрації 1-10%. Напруга живлення від джерела постійного струму регулюється в межах від 0.5 до 20 В. Оптимальне розтравлення дефектів спостерігали в області потенціалів між 0.7 і 2 В. Встановлено, що характер травлення дефектів в кремнії р-типу залежить від прикладеної напруги; при дуже низькій напрузі травляться дефекти, які класифікують за методом наведеного струму як “електрично активні”, при збільшенні напруги травлення стає подібним до хімічного, але зростає чутливість до дефектів (видно дефекти, які не завжди проявляються при хімічному травленні); анодне травлення – метод виявлення дефектів в будь-яких напівпровідниках р- і n-типу провідності, здатний повністю замінити методи хімічне травлення і наведеного струму.

б)Хімічне травлення в травниках, що містять плавикову кислоту (НNO3:HF: CH3COOH) приводить як до зменшення товщини нарощеної плівки, так і до розтравлення її в місці пори до розмірів, достатніх для спостереження під мікроскопом.

Характерно, що при обробці поверхні у вказаному травнику розтравлюється також поверхня кремнієвої пластини під порою, що дозволяє встановити точне положення пор на пластині.

Апробація вказаного методу для наших об’єктів досліджень показала, оптимальний час травлення у вказаному травнику при кімнатній температурі складає 5-7 хвилин. При цьому пори можна спостерігати під мікроскопом при збільшенні х100 (рис. 2.3.2.)

Рис. 2.3.2 Вид поверхні кремнієвої пластини після селективного травлення. (Ділянки темного фону розміщені строго під порами у плівці.)

2.4. Методика вимірювання вольт-фарадних характеристик систем Si-SiO2

МДН-структура є сформованим конденсатором. Для дослідження їх електрофізичних характеристик широко використовується метод вольт-фарадних характеристик (ВФХ), в основі якого лежить вивчення залежності поперечної диференціальної ємності МДН-структури (Сс) від зовнішньої напруги, прикладеної між підкладкою і верхнім електродом (U). Зміна Сс викликана модуляцією зовнішньої напруги ємності приповерхневої області просторового заряду напівпровідника [16].

Еквівалентом вимірювання низькочастотної ВФХ є так званий квазістатичний метод. Якщо до елементарного кола, що складається з резистора і конденсатора, прикладати напругу, лінійно зростаючу з часом Uc=at (де а звичайно складає 0.05 – 0.2 В/с), то струм в цьому колі буде пропорційний ємності. Схема установки для знімання квазістатичних ВФХ приведена на рис.2.4.1. [17]

Знімати ВФХ краще в напрямку від інверсії до збагачення. Для вибору початкової робочої точки генератор пилоподібної напруги з’єднують послідовно з джерелом постійної регулюючої напруги. Тоді Uc=В+аt. Вибір полярності напруг залежить від типу провідності підкладки і знаку поверхневого заряду.

Високочастотною (ВЧ) вважається така область частот, при якій можна знехтувати вкладом у ємність МДН-структури, ємності інверсного шару (С1) і ємності поверхневих станів (Сss). Умови високочастотності записуються:

Rpb>>1/wCd, Rhs>>1/wCd.

Апаратура для вимірювання високочастотних ВФХ розрізняється за методом вимірювання ємності, методом вимірювання зміщення на МДН – структурі (Uc), методиці фіксації і методом обробки результатів.



11

Рис. 2.4.1. Схема установки для вимірювання квазістатичних ВФХ.

1 – джерело пилоподібної напруги; 2 – електрометричний підсилювач.


Рис. 2.4.2. Схема установки для вимірювання високочастотних ВФХ:

1 – джерело зміщення МДН-структури; 2 – ВЧ-генератор; 3 –резонансний підсилювач; 4 – двокоординатний самописець.


На рис.2.4.2. показана схема установки для вимірювання високочастотних ВФХ.

Від генератора змінної напруги через розділюючий конденсатор С1 сигнал поступає на ланку, що складається із Сс, який має МДН-структури, і еталонного резистора R1 (C1>>Cсвч). Спад ВЧ напруги на резисторі R1 (R1<<1/wCcвч) пропорційний Свч.[18]