Смекни!
smekni.com

Основные характеристики и параметры логических элементов (стр. 2 из 3)

Рис. 2.7. Типовая характеристика импульс­ной

помехоустойчивости ЛЭ

Основные параметры логических элементов

Динамические параметры. Быстро­действие ЛЭ при переключении определяется электрической схемой, технологией изготовления и характером нагрузки. Для идентификации измерений динамических параметров в технической документации на ИС приводятся параметры эквивалентной нагрузки, устанавливаются требования к амплитуде и длительности фронта входного сигнала. Уровни отсчета напряжений для определения динамических парамет­ров устанавливаются относительно выходных пороговых напряжений «1» и «0» (рис. 2.8). Временные зависимости напряжений в зонах выше или ниже указанных на рисунке пороговых уровней не влияют на работу ЛЭ и поэтому не представляют интереса.

Рис. 2.8. Входной (а) и выходной (б) сиг­налы

инвертирующего ЛЭ

Основными динамическими параметра­ми ЛЭ являются задержка распространения сигнала tЗД Р при переключении и длительность положительного (нарастающего) и отрицательного (спадающего) фронтов tФ выходных сигналов.

Задержка распространения сигнала при переходе выходного напряжения от «1» к «0»

(при положительной логике* это соответствует отрицательному фронту, при отрицательной — положительному фронту выходного сигнала) определяется как ин­тервал времени между фронтами входного и выходного сигналов ЛЭ, измеренного по заданному уровню.

(*Для положительной логики более положительное значение напряжения (высо­кий уровень) соответствует лог. 1, а менее положительное значение напряжения (низ­кий уровень) — лог. 0.

Для отрицательной логики менее положительное значение напряжения (низкий уровень) соответствует лог. 1. а более положительное значение напряжения (вы­сокий уровень) — лог. 0.)

Задержка распространения сигнала при переходе выходного напряжения от «0» к «1»

(при положительной логике это соответствует положительному фронту, при отрицательной логике — отрицательному фронту выходного сигнала) опреде­ляется как интервал времени между фронтами входного и выходного сигнала ЛЭ, измеренного по заданному уровню. Задержки распространения (
,
) измеряются, как правило, по уровню 0,5 (
+
).

При расчете временной задержки сигнала последовательно включенных ЛЭ используется средняя задержка распространения сигнала ЛЭ:

Длительность фронта выходного сигна­ла при переходе напряжения из «1» в «0» (

) для положительной логики соответ­ствует отрицательному фронту, для отри­цательной логики — положительному фронту.

Длительность фронта выходного сигнала при переходе напряжения из 0 в 1 (

) для положительной логики соответствует положительному фронту, для отрицательной логики — отрицательному фронту. Иногда в технической документации на ИС
,
— обозначаются соответственно
,
. Длительности положительных и отрицательных фронтов измеряют по уровням 0,1 и 0,9 (см. рис. 2.8).

Статические параметры определяют ус­ловия формирования и значения напря­жений высокого и низкого уровней на вы­ходе ЛЭ, его нагрузочную способность, потребляемую мощность при заданных напряжении питания, нагрузке и темпе­ратуре окружающей среды.

К статическим параметрам ЛЭ относят­ся:

выходные и входные напряжения лог.0 и 1 (

,
,
,
);

входные и выходные пороговые напряжения лог. 0 и 1 (

,
,
,
);

входные и выходные токи лог. 0 и 1(

,
,
,
);

токи потребления в состоянии лог. 0 и 1 (

,
);

потребляемая мощность (Pпот).

Выходное пороговое напряжение лог. 0

есть максимальное или минимальное (в зависимости от типа логики) выходное напряжение лог. 0, определяемое пороговой точкой амплитудной переда­точной характеристики в области лог. 0, в которой дифференциальный коэффициент усиления по напряжению КU = 1 для неинвертирующего ЛЭ и КU = -1 для инвертирующего ЛЭ (см. рис. 2.1).

Выходное пороговое напряжение лог. 1

есть минимальное или максималь­ное (в зависимости от типа логики) вы­ходное напряжение лог. 1, определяемое пороговой точкой амплитудной передаточ­ной характеристики в области лог. 1, в которой КU = 1 для неинвертирующего ЛЭ, КU = -1 для инвертирующего ЛЭ.

Порог зоны переключения лог. 0

есть пороговое напряжение лог. 0, опреде­ляемое пороговой точкой амплитудной пе­редаточной характеристики в области лог. 0, в которой КU = 1 для неинвертирующего ЛЭ и КU = -1 для инвертирующего ЛЭ (см. рис. 2.1).

Порог зоны переключения лог. 1

есть пороговое напряжение лог. 1, опре­деляемое пороговой точкой амплитудной передаточной характеристики в области лог. 1, в которой КU = 1 для неинверти­рующего ЛЭ и КU = -1 для инверти­рующего ЛЭ.

Входной ток ЛЭ задается для неблаго­приятного режима работы в пределах до­пустимых температур окружающей среды и напряжения питания как для уровня лог. 0 (

), так и для уровня лог. 1 (
). Выходные токи
,
характеризуют нагрузочную способность ЛЭ. (Втекающие токи имеют положительный знак, выте­кающие токи — отрицательный знак.) Помехоустойчивость определяется отно­сительно этих токов. Поэтому увеличение коэффициента разветвления приводит к снижению помехоустойчивости.

Входной ток лог.1

определяется как входной ток при напряжении лог. 1 на входе ЛЭ.

— входной ток лог. 0 определяется как входной ток при напряжении лог. 0 на входе ЛЭ.

— выходной ток лог. 1 определя­ется как выходной ток при напряжении лог. 1 на выходе ЛЭ.

— выходной ток лог. 0 определяет­ся как выходной ток при напряжении лог. 0 на выходе ЛЭ.

Ток, потребляемый от источника (ис­точников) питания ЛЭ (Iпот), зависит от типа ЛЭ. Для ЛЭ ЭСЛ он почти постоянен (если не принимать во внимание нагрузку) и не зависит от его логического состояния, для ЛЭ ТТЛ ток имеет разные значения для состояния «0» (

) и «1» (
). Кроме того, ЛЭ ТТЛ имеют выбросы тока во время переходных процессов при переключении ЛЭ, что приводит к существенному увеличению тока потребления на высоких частотах. Амплитуда и длительность вы­броса зависят от характера и величины на­грузки, схемотехники выходного каскада ЛЭ ТТЛ, длины линии связи и пр.