Смекни!
smekni.com

Красное смещение и закон Хаббла (стр. 2 из 4)

Гравитационное красное смещение считают следствием замедления темпа времени обусловленного гравитационным полем (эффект общей теории относительности). Это явление (называется также эффектом Эйнштейна, обобщённым эффектом Доплера) было предсказано А. Эйнштейном в 1911, наблюдалось, начиная с 1919 года сначала в излучении Солнца, а затем и некоторых других звёзд. Гравитационное красное смещение принято характеризовать условной скоростью V, вычисляемой формально по тем же формулам, что и в случаях космологического красного смещения. Значения условной скорости: для Солнца V = 0,6 км/сек, для плотной звезды Сириус V = 20 км/сек.

В 1959 г. впервые удалось измерить красное смещение, обусловленное гравитационным полем Земли, которое очень мало: V = 7,5×10^-5 см/сек (опыт Паунда-Ребки). В некоторых случаях (например, при гравитационном коллапсе) должно наблюдаться красное смещение обоих типов (в виде суммарного эффекта).

Наличие у галактик красного смещения (z)позволяет с большой точностью определять расстояния до них по формуле:

R=zc/H.

Некоторые квазары имеют большое красное смещение. Такие объекты удаляются со скоростью, близкой к скорости света. Красные смещения измерены у сотен тысяч галактик. Самые далекие из них находятся на расстоянии 12 миллиардов световых лет.

Вывод, о расширении Вселенной следовал из общей теории относительности Эйнштейна, но даже сам Эйнштейн вначале воспринял это со скепсисом, так как это была идея поступательной эволюции, и в ней было начало, или как говорят сегодня момент рождения, что, конечно, полностью противоречило существующим понятиям бесконечной во времени и пространстве Вселенной. Тем не менее, эта идея была подтверждена наблюдениями и сейчас является общепринятой в научной мире.

В 1946 году Георгий Гамов и его коллеги разработали физическую гипотезу начального этапа расширения Вселенной (теория горячей Вселенной), правильно объясняющую наличие в ней химических элементов, в определенных пропорциях, их синтезом при очень высоких температуре и давлении. Поэтому начало расширения Вселенной по теории Гамова назвали «Большим Взрывом».

В своем основании эта теория предполагает, что в начале вся материя во Вселенной была сконцентрирована внутри ничтожно малого объема бесконечно большой температуры и давления. Затем, согласно сценарию, она взорвалась с чудовищной силой. Этот взрыв породил перегретый ионизированный газ, или плазму. Эта плазма однородно расширялась, пока не остыла до такой степени, что превратилась в обычный газ. Внутри этого охлаждающегося облака расширяющегося газа сформировались галактики, и внутри галактик рождались поколения звезд. Затем вокруг звезд сформировались планеты, такие как наша Земля.

Но мало людей осознают такой факт, что даже из самых мощных телескопов невозможно реально увидеть движение галактик от нас. Картины, которые мы видим - неподвижны, и ученые не претендуют показать их видимое движение, даже если наблюдения будут продолжаться веками.

Итак, чтобы узнать расширяется Вселенная или нет, необходимо рассмотреть свет и другие сорта излучений, которые доходят до нас, пересекая области межзвездного пространства. Изображения, формирующиеся из этих излучений, прямо не показывают расширения Вселенной, но тонкие особенности излучения убедили ученых, что это расширение имеет место. Ученые делают первое предположение, что земные законы физики применимы без изменения

повсюду во Вселенной. Затем они пытаются понять, как процессы, подчиняющиеся этим законам, порождают наблюдаемый свет.

Чтобы понять, как ученые, используя этот путь для анализа света, делают вывод, что Вселенная расширяется, давайте заглянем в историю астрономии и астрофизики. Астрономы, наблюдая небеса, давно уже заметили, что вдобавок к отдельным звездам и планетам на небе существовали много слабо светящихся тел. Они назвали их «nebulae». Это латинское слово, означающее «облако» или «туманность». И позднее, с развитием их концепции, эти объекты назвали галактиками.

Большей по размеру, чем полная луна, и настолько тусклой, что еле видна невооруженным глазом, выглядит соседняя галактика Андромеда. В начале нашего века астрономы обратили мощные новые телескопы к этой и другим галактикам и обнаружили, что они представляют собой обширные острова из миллиардов звезд. На дальних расстояниях были обнаружены целые скопления галактик.

До открытия звезд в Андромеде думали, что все небесные тела расположены внутри границ нашей галактики. Но в связи с развитием концепции и открытием других, более далеких, галактик все изменилось. Размеры Вселенной расширились за пределы понимания.

Открыв явление «красного смещения» В. Слайфер начал объяснять его эффектом Доплера, откуда можно сделать вывод, что галактики движутся от нас. Это был первый большой шаг к идее, что вся Вселенная расширяется.

Эффект Доплера часто разъясняют, используя пример с гудком поезда, который меняет высоту звука, при движении поезда мимо нас. Это явление впервые научно изучалось в 1842 году австрийским физиком Христианом Джоанном Доплером. Он предпологал, что интервалы между звуковыми волнами, излученными от объекта, движущегося в направлении к наблюдателю, сжимаясь, поднимают высоту тона звука. Подобным образом, интервалы между звуковыми волнами, достигающими наблюдателя от источника, движущегося от него, удлиняются, и, таким образом, высота звука понижается. Сообщалось, что Доплер проверял эту идею, поместив трубачей на железнодорожной платформе, приводимой в движение локомотивом. Музыканты с совершенным слухом внимательно слушали, когда мимо них проезжали трубачи, и они подтвердили анализ Доплера.

Доплер предсказал подобный эффект и для световых волн. Для света, увеличение в длине волны соответствует смещению в направлении к красному концу спектра. Поэтому спектральные линии объекта, перемещающегося от наблюдателя, должны сместиться к красному концу спектра. Слифер выбрал для интерпретации своего наблюдения галактик эффект Доплера. Он заметил красное смещение и решил, что галактики должны удаляться от нас.

Другой шаг, ведущий к убеждению в расширении Вселенной, был сделан в 1917 году, когда Эйнштейн опубликовал свою теорию относительности. До Эйнштейна ученые всегда предполагали, что пространство простирается бесконечно по всем направлениям, и что геометрия пространства Эвклидова и трехмерна. Но Эйнштейн предположил, что пространство может иметь другую геометрию - четырехмерного искривленного замкнутого пространства-времени.

Согласно теории Эйнштейна существует множество форм, которые может принимать пространство. Одна из них - замкнутое пространство без границ, похожая на поверхность сферы; другая - отрицательно искривленное пространство, которое бесконечно простирается во всех направлениях.

Сам Эйнштейн думал, что Вселенная статична, и он приспособил свое уравнение для этого. Но, почти, в то же время, датский астроном Вильям де Ситтер нашел решение уравнения Эйнштейна, которое предсказывало быстрое расширение Вселенной. Такая геометрия пространства должна изменяться со временем.

Работа де Ситтера вызвала интерес среди астрономов всего мира. Среди них - Эдвин Хаббл. Он присутствовал на конференции Американского Астрономического Общества в 1914 году, когда Слайфер докладывал о своих оригинальных находках в движении галактик. В 1928 году в знаменитой обсерватории Маунт Вильсон, Хаббл взялся за работу в попытке соединить теорию де Ситтера о расширяющейся Вселенной и наблюдения Сайфера удаляющихся галактик.

Хаббл рассуждал примерно так: В расширяющейся Вселенной вы должны ожидать удаление галактик друг от друга. И, более далекие галактики будут удалятся друг от друга быстрее. Это должно означать, что из любой точки, включая Землю, наблюдатель должен видеть, что все другие галактики удаляются от него, и, в среднем, более далекие галактики должны двигаться быстрее.

Хаббл думал, что если бы это было верно и наблюдалось на самом деле, то оказалось бы, что существует пропорциональная зависимость между расстоянием до галактики и степенью красного смещения в их спектре. Он наблюдал, что в спектрах большинства галактик имеет место красное смещение, и галактики на больших расстояниях от нас имеют большее красное смещение.

Хаббл не знал, насколько удалена от нас каждая данная галактика и поэтому предложил использовать такую идею: «Мы можем начать оценивать расстояния до ближайших звезд при помощи различных методов. Затем, шаг за шагом, мы можем построить «лестницу космических расстояний», которая даст нам оценку расстояний до некоторых галактик. Если мы сможем оценивать присущую яркость галактик, тогда мы сможем найти отношение расстояния до неизвестной галактики к расстоянию до известной, измеряя видимую яркость галактики. Эта зависимость подчиняется закону обратного корня.

Здесь мы не будем вникать в детали комплексной процедуры, используемой для обоснования лестницы расстояний. Заметим только, что эта процедура включает в себя много теоретических интерпретаций, в которых много сомнительных мест, и, которые подвергались ревизии, часто в неожиданных местах. Это будет проявляться по мере изложения».