Смекни!
smekni.com

Ферритин как маркер железодефицитной анемии и опухолевый маркер (стр. 2 из 6)

В 1971 г. Dagg e. a. предложили клиническую классификацию гиперсидерозов. Различают следующие формы гиперсидероза:

паренхиматозные формы (с преимущественным отложением железа в клетках паренхимы печени). К ним относятся: первичный наследственный гемохроматоз, сидероз при некоторых видах цирроза печени, вторичный сидероз при портокавальном анастомозе, сидероз при врожденной атрансферринемии;

"ретикулоэндотелиальные" формы, к которым относятся: генерализованные отложения железа при хронических рефрактерных (к специфическому лечению) анемиях, гемолитических анемиях, многократных гемотрансфузиях, при избыточном парентеральном введении железа, сидерозе банту;

локальные формы: идиопатический гемосидероз легких, легочно-почечный синдром Гудпасчера и гемосидероз почечного происхождения при ночной пароксизмальной гемоглобинурии.

При этих патологических состояниях концентрация ферритина в плазме крови повышена вследствие нарушения баланса обмена железа.

В то время как истощение запасов железа в организме является единственной причиной снижения уровня сывороточного ферритина, повышение уровня ферритина наблюдается не только при избытке запасов железа, но также в некоторых других ситуациях.

Определение ферритина можно использовать для диагностики и мониторинга ряда онкологических заболеваний. Ценность определения ферритина как онкомаркера подтверждают многие исследования [7, 8].

Высокие концентрации ферритина обнаруживаются в сыворотке пациентов с карциномой поджелудочной железы, раком легких, гепатомой и нейробластомой, острым миелобластным и лимфобластным лейкозами, лимфогранулематозом (болезни Ходжкина). Концентрация сывороточного ферритина обычно повышена при метастазирующем раке молочной железы. При онкологических заболеваниях концентрация ферритина в крови повышена как вследствие его активной секреции, так и за счет повышенного распада клеток и высвобождения цитоплазматического ферритина, например, при химиотерапии. После успешного лечения концентрация ферритина в сыворотке крови снижается.

Концентрация ферритина может также повышаться при некоторых острых и хронических заболеваниях печени (например, алкогольное поражение, гепатит), при голодании и истощении, воспалительных заболеваниях (легочные инфекции, остеомиелит, хронические инфекции мочевых путей, ревматоидный артрит, системная красная волчанка, ожоговая болезнь), инфаркте миокарда [8, 9]. В этих случаях основной причиной увеличения содержания ферритина в крови является некроз клеток и высвобождение внутриклеточной фракции.

Определение ферритина в клинической практике позволяет улучшить диагностику нарушений метаболизма железа. Несомненными достоинствами метода являются также малая инвазивность и простота выполнения. Однако правильная интерпретация результатов требует ясного понимания как процессов метаболизма железа, так и учета других влияющих на уровень сывороточного ферритина факторов, например поражения печени или воспалительных процессов.

В настоящее время многие зарубежные производители предлагают наборы реагентов для иммуноферментного определения содержания ферритина в сыворотке, однако они очень мало распространены в России вследствие высокой стоимости и недостаточной информированности как медиков, так и населения о диагностической значимости данного показателя. Таким образом, необходимость разработки отечественной тест-системы для определения концентрации ферритина в крови человека очевидна.

2. Метаболизм железа в организме человека

Общее содержание железа в организме здорового взрослого человека составляет 3-5 г (у женщин часто меньше). 70% от этого количества входит в состав гемоглобина и 15-25% - ферритина и гемосидерина. Оставшаяся часть приходится на мышечный миоглобин (8%), цитохромы и железосеропротеины, выполняющие функцию транспорта электронов в митохондриях, и железосодержащие ферменты (оксидазы, супероксиддисмутазы, каталазы) [10].

В сутки в организм с пищей поступает 1-2 мг железа. Наиболее интенсивное всасывание осуществляется в 12-перстной и тощей кишке и отсутствует в подвздошной. Усвояемость железа ограничена и определяется многими факторами, например, составом пищи, состоянием желудочно-кишечного тракта. Всасывание и транспорт железа к клеткам осуществляют трансферрины - белки бета-глобулиновой фракции, синтезируемые печенью. Различают две формы трансферринов. Мукозный трансферрин секретируется с желчью в кишечник, где окисляет и связывает один или два атома железа и проникает в энтероцит. На базальной стороне клетки он отдает железо ферритину или своему аналогу - плазматическому трансферрину.

Плазматический трансферрин, "нагруженный" железом, разносится с током крови по организму. При взаимодействии трансферрина со своим специфическим рецептором на поверхности клеточных мембран образуется эндоцитозная вакуоль, внутри нее происходит изменение рН, и железо, меняя степень окисления +3 на +2, освобождается от трансферрина. Белок вновь возвращается в кровеносное русло, а железо немедленно связывается низкомолекулярными хелаторами, такими как цитрат или аскорбиновая кислота. После этого железо может быть использовано для синтеза гемоглобина и железосодержащих ферментов или заключено для хранения в ферритин.

В организме человека происходит постоянное перераспределение железа.

В количественном отношении наибольшее значение имеет метаболический цикл (1): плазма --» красный костный мозг --» эритроциты --» плазма. Кроме того, функционируют циклы (2): плазма --» ферритин, гемосидерин --» плазма и (3): плазма --» миоглобин, железосодержащие ферменты --» плазма. Все эти три цикла взаимосвязаны через плазматический трансферрин. Единовременно он связывает лишь 3 мг железа, но ежедневный обмен железа через него в 10 раз больше. Трансферрин, таким образом, играет центральную роль в "круговороте" железа в организме.

Возможность выделительной системы человека экскретировать железо из организма ограничена. В день теряется около 1 мг железа, в основном путем слущивания слизистой оболочки кишечника и с желчью. Примерно 0,1 мг выводится с мочой, потом, волосами и ногтями. Потеря 15-30 мл крови ведет к потере 7,5-15 мг железа. Для хранения невыведенного избытка железа его необходимо конвертировать в удобную форму.

Свободные ионы железа могут образовываться в клетке при переносе между трансферрином и низкомолекулярными хелаторами, ферритином и хелаторами, хелаторами и митохондриями, при деградации ферритина в лизосомах, при избыточном накоплении гемосидерина. Несвязанное железо вместе с супероксид-радикалом, который восстанавливает Fe(III) (уравнение 1), и перекисью водорода, образующейся в ходе реакции Фентона (уравнение 2), поставляют высоко реакционноспособные гидроксильные радикалы. Суммой этих двух реакций является так называемая реакция Габера-Вейса (уравнение 3). Fe(III), получающееся при реакции Фентона (уравнение 2), также может быть восстановлено аскорбатом, что ведет к дальнейшей продукции радикалов.

Обладающий высочайшей активностью гидроксильный радикал вызывает перекисное окисление липидов, разрывы нитей ДНК и деградацию других биомолекул. С его действием сейчас связывают развитие нейродегенеративных и опухолевых заболеваний [11].

Таким образом, ионы железа постоянно находятся в связанной форме. Главные органы, выполняющие функцию хранения железа, - это печень, которая содержит около 700 мг железа, селезенка и костный мозг. Мышцы также важны из-за их большой массы, хотя реальная концентрация хранимого в них железа низкая - 40 мг/кг.

3. Структура и функция молекулы ферритина.

Молекула ферритина образована Н- и L- типами субъединиц (Н - heavy и L - light), кодируемых разными генами. Человека имеет около 16 копий Н-гена и около 5 копий L-гена, локализованных на различных хромосомах. Однако большинство из них являются безинтронными псевдогенами. Функционально активные Н- и L-гены человека располагаются в 12-13 сегменте длинного плеча 11 хромосомы и 13 сегменте длинного плеча 19 хромосомы соответственно. Ген L-цепи состоит из 878 пар азотистых оснований, Н-цепи - из 801 пары. Известна структура Н- и L-генов человека. Все они содержат три интрона различной длины. 5'-фланкирующие области генов Н- и L-цепей не имеют сходства, тогда как среди гомологичных цепей различных видов сохраняется высокая степень консервативности [12, 13, 14].

У человека аминокислотные последовательности Н и L идентичны на 54%. Аспартат, глутамат и их амиды составляют около 25% аминокислотных остатков, лизин и аргинин - 11-13%. Высоко содержание лейцина, но мало содержание изолейцина. У млекопитающих значительно варьирует содержание серина, пролина, глицина, лейцина, тирозина, фенилаланина и аргинина. Полипептидная цепь Н-типа человека состоит из 183 аминокислотных остатков, ее молекулярная масса 21 кДа. Молекулярная масса L-субъединицы, состоящей из 175 аминокислот, около 19 кДа.

Вторичная структура субъединиц почти на 70% представлена альфа-спиралями.

Третичная структура субъединиц животных и растений намного более консервативна, чем их первичная последовательность [15]. Каждая субъединица образована пучком из четырех длинных спиралей, расположенных параллельно, пятой короткой спирали, пересекающей ось субъединицы примерно под углом 60º и длинной вытянутой петли (общие размеры 25×25×50 ангстрем) (рис. 2).

Структура субъединиц стабилизируется лишь водородными связями, дисульфидные связи не обнаружены.

Каждая молекула апоферритина собрана из 24 структурно равнозначных субъединиц, вносящих одинаковый вклад в формирование четвертичной структуры. В 24-мерах смешанного состава (гетрополимерах) Н- и L- субъединицы имеют одинаковую конформацию и много сходных остатков в областях H-H, H-L и L-L межсубъединичных контактов, предоставляя возможность формирования гетерополимеров с любой из возможных композицией субъединиц.