Смекни!
smekni.com

Биологическая роль соединений, содержащих К+, Na+, их применение в фармации (стр. 2 из 3)

Если в буферном растворе С (NН4ОН) = С (NН4С1), то рН = 14 - рКосн. = 14 + lg 1,8.10-5 = 9,25.

Способность буферных смесей поддерживать практически постоянное значение рН раствора основана на том, что входящие в них компоненты связывают ионы Н+ и ОН-, вводимые в раствор или образующиеся в результате реакции, протекающей в этом растворе. При добавлении к аммиачной буферной смеси сильной кислоты, ионы Н+ будут связываться молекулами аммиака или гидроксида аммония, а не увеличивать концентрацию ионов Н+ и уменьшать рН раствора.

При добавлении щелочи ионы ОН - будут связывать ионы NН4 +, образуя при этом малодиссоциированное соединение, а не увеличивать рН раствора.

Буферное действие прекращается, как только одна из составных частей буферного раствора (сопряженное основание или сопряженная кислота) полностью израсходуется.

Для количественной характеристики способности буферного раствора противостоять влиянию сильных кислот и оснований используется величина, называемая буферной емкостью. По мере увеличения концентрации буферного раствора возрастает его способность сопротивляться изменению рН при добавлении кислот или щелочей.

Свойство растворов сохранять значение рН в определенных пределах при добавлении небольших количеств кислоты или щелочи называется буферным действием. Растворы, обладающие буферным действием, называются буферными смесями.

Для случая титрования: щавелевая кислота и гидроксид калия, изобразите кривую титрования, укажите случай титрования, скачок титрования, точку эквивалентности, используемые индикаторы

Скачок титрования: pH = 4-10. Максимальная ошибка в% - меньше 0.4.

Индикаторы - тимолфталеин, фенолфталеин.

Восстановитель, какие элементы периодической системы элементов могут быть восстановителями и почему?

Восстановитель - это вещество, которое в ходе реакции отдает электроны, т.е. окисляется.

Восстановителями могут быть нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в состоянии промежуточной степени окисления.

Нейтральные атомы. Типичными восстановителями являются атомы, на внешнем энергетическом уровне которых имеется от 1 до 3 электронов. К этой группе восстановителей относятся металлы, т.е. s-, d - и f-элементы. Восстановительные свойства проявляют и неметаллы, например водород и углерод. В химических реакциях они отдают электроны.

Сильными восстановителями являются атомы с малым потенциалом ионизации. К ним относятся атомы элементов двух первых главных подгрупп периодической системы элементов Д.И. Менделеева (щелочные и щелочноземельные металлы), а также Аl, Fe и др.

В главных подгруппах периодической системы восстановительная способность нейтральных атомов растет с увеличением радиуса атомов. Так, например, в ряду Li - Fr более слабым восстановителем будет Li, а сильным - Fr, который вообще является самым сильным восстановителем из всех элементов периодической системы.

Отрицательно заряженные ионы неметаллов. Отрицательно заряженные ионы образуются присоединением к нейтральному атому неметалла одного или несколько электронов:

Так, например, нейтральные атомы серы, йода, имеющие на внешних уровнях 6 и 7 электронов, могут присоединить соответственно 2 и 1 электрон и превратиться в отрицательно заряженные ионы.

Отрицательно заряженные ионы являются сильными восстановителями, так как они могут при соответствующих условиях отдавать не только слабо удерживаемые избыточные электроны, но и электроны со своего внешнего уровня. При этом, чем более активен неметалл как окислитель, тем слабее его восстановительная способность в состоянии отрицательного иона. И наоборот, чем менее активен неметалл как окислитель, тем активнее он в состоянии отрицательного иона как восстановитель.

Восстановительная способность отрицательно заряженных ионов при одинаковой величине заряда растет с увеличением радиуса атома. Поэтому, например, в группе галогенов ион йода обладает большей восстановительной способностью, чем ионы брома и хлора, a фтор - восстановительных свойств совсем не проявляет.

Положительно заряженные ионы металлов в низшей степени окисления. Ионы металлов в низшей степени окисления образуются из нейтральных атомов в результате отдачи только части электронов с внешней оболочки. Так, например, атомы олова, хрома, железа, меди и церия, вступая во взаимодействие с другими веществами, вначале могут отдать минимальное число электронов.

Ионы металлов в низшей степени окисления могут проявлять восстановительные свойства, если у них возможны состояния с более высокой степенью окисления.

В уравнении ОВР расставьте коэффициенты методом электронного баланса. Укажите окислитель и восстановитель.

K2Cr2O7 + 6FeSO4 + 7H2SO4 = K2SO4 + Cr2 (SO4) 3 + 3Fe2 (SO4) 3 + 7H2O

1 Cr2+6 +3е x 2 Cr2+3 окислитель

6 Fe+2 - 1е Fe+3 восстановитель

2KMnO4+ 5H2S + 3H2SO4 = K2SO4 + 2MnSO4 + 5S + 8H2O

2 Mn+7 + 5е Mn+2 окислитель

5 S-2 - 2е S0 восстановитель

5. Меркурометрия. Роданометрия

Для титриметрического определения галогенидов применяют меркурометрию - метод, основанный на образовании малорастворимых солей с ионами Hg (I).

Титрант-водный раствор Hg2 (NO3) 2. Конечную точку титрования устанавливают по исчезновению красной окраски при добавлении Fe (SCN) 3 или по образованию сине-фиолетового осадка с дифенилкарбазоном. Индикаторы рекомендуется вводить как можно ближе к концу титрования. Метод позволяет определять ионы Сl - в присут. восстановителей (S2-, SO2-3) и окислителей (МnО4-, Сr2О7-).

Меркурометрия дает возможность прямого определения анионов в кислой среде (0,2-5 М HNO3), в мутных и окрашенных растворах; однако токсичность солей Hg является серьезным недостатком методов.

Роданометрической титрование основано на осаждении ионов Ag+ тиоцианатами:

Ag+ + SCN - = AgSCN

Для определения необходим раствор NH4SCN (или KSCN). Определяют Ag+ прямым титрованием раствором тиоцианата.

Тиоцианатометрическое определение галогенов выполняют по так называемому методу Фольгарда: к жидкости, содержащей С1-, приливают избыток титрованного раствора нитрата серебра. Затем остаток AgNO3 обратно оттитровывают раствором тиоцианата и вычисляют результат.

Индикатор метода Фольгарда - насыщенный раствор NH4Fe (SO4) 2 - 12H2O. Пока в титруемой жидкости имеются ионы Ag+, прибавляемые анионы SCN - связываются с выделением осадка AgSCN, но не взаимодействуют с ионами Fe3+. Однако после точки эквивалентности малейший избыток NH4SCN (или KSCN) вызывает образование кроваво-красных ионов [Fe (SCN)] 2+ и [Fe (SCN) 2] +. Благодаря этому удается определить эквивалентную точку.

Присутствие кислот не мешает титрованию по методу Фольгарда и даже способствует получению более точных результатов, так как кислая среда подавляет гидролиз соли железа. Метод позволяет определять ион С1 - не только в щелочах, но и в кислотах. Определению не мешает присутствие Ва2+, Рb2+, Bi3+ и некоторых других ионов. Однако если в анализируемом растворе имеются окислители или соли ртути, то применение метода Фольгарда становится невозможным: окислители разрушают ион SCN-, а катион ртути осаждает его.

Щелочной исследуемый раствор нейтрализуют перед титрованием азотной кислотой, иначе ионы Fe3+, входящие в состав индикатора, дадут осадок гидроксида железа (III).

Напишите реакцию, диссоциацию комплекса, выражение к нестойкости.

H2S + 2 [Ag (NH3) 2] Cl = Ag2S + 2NH4Cl + 2NH3

[Ag (NH3) 2] Cl = [Ag (NH3) 2] + + Cl-

[Ag (NH3) 2] + = Ag+ + 2NH3

Kнест. = [Ag+] [NH3] 2/[[Ag (NH3) 2] +]

Какие частицы могут быть лигандами? Приведите примеры.

Лиганды - некоторое число противоположно заряженных атомов или электронейтральных частиц вокруг комплексообразователя.

Лигандами могут быть:

ионы галогенов, CN-, SCN-, NO2-, OH-, SO42-, CO32 - и др.;

нейтральные молекулы: H2O, NH3, N2H4, C2H5N и др.

Ответ на тестовые задания.

1 - В 49 - В

10 - В 57 - А

20 - Б 59 - Б, Г

28 - Б 69 - Б

38 - В 77 - В

Решение задач.

Какие массы сульфата натрия и воды необходимо взять для приготовления 3 кг раствора с массовой долей 20%. Как приготовить данный раствор?

Дано: Решение:
Mраствора = 3000 гω = 20%Найти:mводы - ?mNa2SO4 - ? ω = mвещества /mраствора x 100%1) Находим массу натрия сульфата:m = ωxmраствора /100m = 20 х 3000/100 = 600 г (натрия сульфата)2) Находим массу растворителя (воды):m = mраствора - mвеществаmводы = 3000- 600 = 2400г (воды)3) Переведем массу растворителя в объем:Так как плотность воды = 1г/мл, значитρ = m/V, V = m/ ρV = 2400/1 = 2400 мл (воды)Ответ:Чтобы приготовить раствор по вышеуказанному условию необходимо:взвесить на аналитических весах 300 г натрия сульфата;количественно верно (или без потерь) перенести в колбу нужного объема;добавить в колбу отмеренный цилиндром 2400 мл воды;все перемешать.

Как приготовить 50 г 0,5% раствора KMnO4 разбавлением 1,55%, плотностью 1,02 г/мл?

Дано: Решение:
mраствора = 50 гω = 0,5%ω1 = 1,55%ρ1 = 1,02г/млНайти:mводы - ?mMgSO4 - ? ω = mвещества /mраствора x 100%1) Находим массу растворенного вещества:m = ωxmраствора /100m = 0,5 x50/100 = 0,25г (калия перманганата)2) Находим объем 1,55% раствора, необходимого для получения 0,5% раствора:ω = mвещества x 100/Vраствора x ρV = mx 100/ ω x ρV = 0,25 х 100/1,55 х 1,02 = 15,8 мл3) Переводим в граммы:ρ = m/V, m = Vx ρm = 15,8 х 1,02 = 16,1 г4) Находим массу воды:m = mраствора - mвеществаm = 50 - 16,1 = 33,9 г (воды)5) Переведем массу растворителя в объем:Так как плотность воды = 1г/мл, значитρ = m/V, V = m/ ρV = 33,9/1 = 33,9 мл (воды)Ответ:Чтобы приготовить раствор по вышеуказанному условию необходимо:отмерить 15,8 мл 1,55% раствора калия перманганата;количественно верно (или без потерь) перенести в колбу нужного объема;добавить в колбу отмеренный цилиндром 33,9 мл воды;все перемешать.

Как приготовить 250 мл 0,03 N раствора NaNO2 разбавлением 2 N раствора.