Смекни!
smekni.com

Культуры изолированных клеток и тканей как новый источник для получения лекарственного сырья (стр. 2 из 6)

Подбор физических и химических условий культивирования является наиболее простым и часто применяемым подходом для повышения продуктивности. В основе физиологического регулирования процессов вторичного синтеза лежит изучение влияния факторов культивирования на рост и метаболизм клеток. Большое внимание уделяется таким факторам культивирования, как регуляторы роста, минеральные вещества, витамины, сахара, свет, аэрация, температура, а также иммобилизация клеток и обработка элиситорами. Во многих случаях эти работы привели к успеху, однако они выполняются эмпирически и поэтому длительны и трудоемки. К тому же следует оговориться, что несмотря на эффективность повышения уровня биосинтеза физиологическими методами, добиться количественно значимых изменений в дедифференцированных клеточных культурах, сопоставимых с уровнем в интактном растении, лишь за некоторым исключением, не удается. Стимулирование же синтеза элиситорами носит, к сожалению, временный характер.

Более эффективной в этом плане является генетическая регуляция синтеза вторичного метаболизма в системе in vitro. С использованием экспериментального мутагенеза стало возможным получение довольно продуктивных штаммов. С помощью этого метода в ИФР РАН был получен мутантный штамм Dioscorea deltoidea DM-0.5 (мутаген — N- нитрозометилмочевина, доза — 0.5 ммоль/ч) — сверхпродуцент фуростаноловых гликозидов, высокая способность к синтезу — 6-8 % в сухой массе клеток — сохранялась в течение длительного времени (около 30 лет) [7]. Следует отметить, что метод индуцированного мутагенеза носит также эмпирический характер и не менее трудоемок, чем физиологические способы регуляции вторичного метаболизма. Ряд перспективных культур был получен в результате генетической трансформации и других генно-инженерных манипуляций. Особенно следует отметить трансформанты, полученные с помощью плазмид агробактерий (Agrobacterium rhizogenes A. Tumefaciens), в частности « бородчатых корней», продуктивность которых оказалась достаточно высокой. Поскольку одной из основных причин снижения уровня биосинтеза в культурах in vitro является дедифференциация ткани, то один из путей повышения синтеза вторичных соединений в клеточных культурах связан с дифференцировкой ткани и органогенезом. Повышение содержания вторичных соединений было отмечено в органогенных культурах видов Senecio, Lichroa ledgeriana.

Известно, что физиологическое действие условий in vitro приводит к генетической гетерогенности системы. Речь идет о так называемой сомаклональной изменчивости, которая возникает при длительном культивировании. На генетической изменчивости клеток в культуре in vitro основана селекция штаммов, обеспечивающая большой выход ценных продуктов вторичного метаболизма растительных клеток. При клонировании суспензионной культуры клеток паслена были выделены линии, накапливающие больше 3 % соланидина, получен штамм клеток руты душистой, содержащей в 20 раз больше алкалоида рутакридона по сравнению с растением. Биотехнологическое использование клеточных культур в качестве сырья в промышленных масштабах становится реальностью. В виде примеров можно привести производство шиконина из Lithospermum erythrorhison в Японии (фирма Toshiba) — ценного для косметики, пищевой промышленности и медицины растительного нафтохинонового пигмента. В России производство культуры ткани женьшеня («Биоженьшень») осуществляется на биохимических заводах. Экстракт, получаемый из биомассы женьшеня, используется в качестве биологически активной добавки к кремам, лосьонам, а в пищевой промышленности — для приготовления тонизирующих напитков. Для получения ценного противоаритмического препарата аймалина на ХПХФО «Здоровье»(Харьков, Украина) организовано опытное производство биомассы культуры тканей Rauwolfia serpentina. Таким образом, возможности, открытые методом культуры тканей, позволили в настоящее время создать биотехнологическое производство принципиально новых видов сырья для получения необходимых соединений.

В лаборатории биохимии и биотехнологии растений также получены значительные результаты по получению культур растительных клеток — продуцентов экдистероидов. В начале 90-х годов были получены каллусные культуры Serratula coronata и Ajuga reptans — продуценты экдистероидов. Полученные штаммы различались по степени соответствия интактным растениям по количественному составу экдистероидов и соотношению индивидуальных компонентов. Если в клеточных культурах S. Coronata наблюдали заметное снижение уровня биосинтеза по сравнению с интактными растениями (20-100 раз), то ряд каллусных культур A. Reptans по суммарному содержанию экдистероидов не уступал дикорастущим растениям. Для обеих клеточных культур была отмечена тенденция к снижению уровня синтеза экдистероидов с увеличением продолжительности культивирования, однако были выявлены штаммы и со стабильным уровнем синтеза. Среди длительно культивируемых каллусных культур S. Coronata и A. Reptans были выявлены штаммы с относительно высоким содержанием 20-гидроксиэкдизона (экдистероида, обладающего высоким тонизирующим и ранозаживляющим действием), из которых в 1999 г. нами были получены суспензионные культуры. Методы глубинного культивирования клеток высших растений в последние годы привлекают все больший интерес, поскольку этот метод обладает рядом преимуществ перед поверхностным культивированием (каллусными культурами): обеспечение одинаковых условий для всех клеток популяции; увеличение скорости их роста и биосинтетического потенциала; возможность автоматизации процессов.


Перечень клеточных линий согласно видовой принадлежности

ВИД ОРГАН или ТКАНЬ НАЗВАНИЕ ЛИНИИ
Aristolochia manshuriensis Стеблевые сегменты A - 2
Arnebia euchroma Пазушная почка AE - 1
Camellia sinensis Стебель ChS-2 (ЧС-2)
Dioscorea deltoidea ИФР Д1,каллус IPHR DM 0.5 (ИФР ДМ 0.5)
ИФР Д1,каллус IPHR DM1 (ИФР ДМ1)
ИФР Д1,каллус IPHR DM8 (ИФР ДМ8)
Корень IPHR D1 (ИФР Д1)
Epimedium macrosepalum Черешок листа EM-1
Eritrichium incanum Корень ERSR
Medicago sativa Лист L-1 (Л-1)
Panax ginseng Корень DAN-25 (ДАН-25)
Корень IPHR G1 (ИФР Ж1)
Корень PANAX-13 (ПАНАКС-13)
Стеблевая опухоль R-1
Panax quinquefolius Корень IPHR G10 (ИФР Ж10)
Poliscias filicifolia Лист BFT-01-95 (БФТ-01-95)
Rhodiola rosea Стебель ZK-1 (ЗК - 1)
Rubia cordifolia Стеблевой апекс RС - 1
Scorzonera hispanica Опухоль корня SFR-SH-1 (СФР-SH-1)
Stephania glabra линия VILAR Sg-6 VILAR Sg-48 (ВИЛАР Sg - 48)
Stevia rebaudiana Bertoni Лист SR - 1
Ungernia victoris Луковица U - 1

2.2 Синтез вторичных метаболитов

Вторичный метаболизм культивируемых клеток привлекает всё больше внимания исследователей, это обусловлено, прежде всего перспективностью промышленного использования культивируемых клеток растений для получения соединений специализированного обмена растений. Особую актуальность этот вопрос приобретает в связи с возрастающей остротой экологических проблем. В медицине 25% всех применяемых лекарств содержат соединения растительного происхождения. Если приплюсовать к этому потребности пищевой промышленности, парфюмерии, сельского хозяйства, то становится очевидной необходимость замены плантационного, а тем более дикорастущего сырья на гарантированно получаемую промышленным способом биомассу культивируемых клеток, содержащую необходимые соединения в достаточном количестве.

Как показал почти полувековой опыт исследования вторичных соединений в клеточных культурах растений (с 1940 года), для этого необходимо решение многих фундаментальных проблем биологии культивируемых клеток. Наиболее серьёзной из них является разработка стратегии контроля синтеза вторичных соединений в культивируемых клетках растений. До сих пор неясно, возможна ли разработка единой стратегии или она должна быть специфической для разных классов вторичных соединений, или же индивидуальной для каждого конкретного случая.

2.3 Влияние генетических, физических и химических факторов на рост и развитие культуры клеток и тканей, на синтез вторичных метаболитов

На культивирование клеток оказывают влияние многие факторы, такие как:

1.генетика экспланта (выбор вида растения, выбор конкретного растения донора)

2.эпигенетика экспланта (выбор органа растения)

3.генетика популяции клеток (культивирование (селекция) культуры, получение мутантов)

4.физиология популяции клеток (оптимизация условий (химических и физических факторов) роста и синтеза вторичных соединений)